

Laboratory Report of Analysis

To: ADEC-Air & Water Quality

610 University Drive Fairbanks, AK 99709 (907)451-2141

Report Number: 1225537

Client Project: WHADA

Dear Morgan Brown,

Sincerely,

Project Manager
Justin.Nelson@sgs.com

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

SGS North America Inc.

Justin Nelson Date

Print Date: 09/30/2022 7:31:02AM Results via Engage

Case Narrative

SGS Client: ADEC-Air & Water Quality SGS Project: 1225537 Project Name/Site: WHADA Project Contact: Morgan Brown

Refer to sample receipt form for information on sample condition.

Mercury 245.1 Total was analyzed by SGS of Orlando, FL.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check
LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 09/30/2022 7:31:05AM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
SOCR-0.05	1225537001	09/13/2022	09/13/2022	Water (Surface, Eff., Ground)
SOCR-0.05-DUP	1225537002	09/13/2022	09/13/2022	Water (Surface, Eff., Ground)
SOCR-4.5	1225537003	09/13/2022	09/13/2022	Water (Surface, Eff., Ground)
SOCR-4.5-DUP	1225537004	09/13/2022	09/13/2022	Water (Surface, Eff., Ground)
SOCR-0.05	1225537005	09/13/2022	09/13/2022	Water (Surface, Eff., Ground)
SOCR-0.05-DUP	1225537006	09/13/2022	09/13/2022	Water (Surface, Eff., Ground)
SOCR-4.5	1225537007	09/13/2022	09/13/2022	Water (Surface, Eff., Ground)
SOCR-4.5-DUP	1225537008	09/13/2022	09/13/2022	Water (Surface, Eff., Ground)

MethodMethod DescriptionSM 5310BDissolved Organic CarbonSM21 2340BHardness as CaCO3 by ICP-MS

EP200.8 Metals in Drinking Water by ICP-MS DISSO

EP200.8 Metals in Water by 200.8 ICP-MS SM21 4500NO3-F Nitrate/Nitrite Flow injection Pres.

SM23 4500-N D TKN by Phenate (W)
SM21 4500P-B,E Total Phosphorus (W)

Detectable Results Summary

Client Sample ID: SOCR-0.05			
Lab Sample ID: 1225537001	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Calcium	19900	ug/L
	Hardness as CaCO3	68.0	mg/L
	Magnesium	4460	ug/L
Waters Department	Total Phosphorus	0.0800	mg/L
Client Sample ID: SOCR-0.05-DUP			
Lab Sample ID: 1225537002	<u>Parameter</u>	Result	Units
Metals by ICP/MS	Calcium	18900	ug/L
	Hardness as CaCO3	65.4	mg/L
	Magnesium	4450	ug/L
Waters Department	Total Phosphorus	0.0738	mg/L
Client Sample ID: SOCR-4.5			
Lab Sample ID: 1225537003	Devenuetos	Desult	Llude
·	<u>Parameter</u> Calcium	<u>Result</u> 15300	<u>Units</u>
Metals by ICP/MS	Hardness as CaCO3	52.9	ug/L
	Magnesium	3560	mg/L
Mataua Danautusant	Total Phosphorus	0.0625	ug/L mg/L
Waters Department	Total Phosphorus	0.0025	IIIg/L
Client Sample ID: SOCR-4.5-DUP			
Lab Sample ID: 1225537004	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Metals by ICP/MS	Calcium	15600	ug/L
	Hardness as CaCO3	53.5	mg/L
	Magnesium	3570	ug/L
Waters Department	Total Phosphorus	0.0640	mg/L
Client Sample ID: SOCR-0.05			
Lab Sample ID: 1225537005	Parameter	Result	Units
Dissolved Metals by ICP/MS	Arsenic	6.68	ug/L
	Barium	11.2	ug/L
	Calcium	19200	ug/L
	Magnesium	4440	ug/L
	Manganese	1.87	ug/L
	Potassium	1990	ug/L
	Silicon	10400	ug/L
	Sodium	5740	ug/L
	Zinc	32.6	ug/L
Waters Department	TOC Average, Dissolved	8.98	mg/L

Print Date: 09/30/2022 7:31:08AM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: SOCR-0.05-DUP			
Lab Sample ID: 1225537006	Parameter	Result	Units
Dissolved Metals by ICP/MS	Arsenic	6.37	ug/L
	Barium	11.0	ug/L
	Calcium	19200	ug/L
	Magnesium	4440	ug/L
	Manganese	2.36	ug/L
	Potassium	1990	ug/L
	Silicon	10400	ug/L
	Sodium	5710	ug/L
Waters Department	TOC Average, Dissolved	8.97	mg/L
Client Sample ID: SOCR-4.5			
Lab Sample ID: 1225537007	<u>Parameter</u>	Result	<u>Units</u>
Dissolved Metals by ICP/MS	Arsenic	8.08	ug/L
•	Barium	8.91	ug/L
	Calcium	15600	ug/L
	Iron	309	ug/L
	Magnesium	3580	ug/L
	Manganese	2.46	ug/L
	Potassium	1830	ug/L
	Silicon	9550	ug/L
	Sodium	3660	ug/L
	Zinc	71.6	ug/L
Waters Department	TOC Average, Dissolved	9.73	mg/L
Client Sample ID: SOCR-4.5-DUP			
Lab Sample ID: 1225537008	<u>Parameter</u>	Result	<u>Units</u>
Dissolved Metals by ICP/MS	Arsenic	8.44	ug/L
	Barium	8.60	ug/L
	Calcium	15300	ug/L
	Iron	335	ug/L
	Magnesium	3500	ug/L
	Manganese	2.70	ug/L
	Potassium	1790	ug/L
	Silicon	9410	ug/L
	Sodium	3560	ug/L
Waters Department	TOC Average, Dissolved	9.76	mg/L

Print Date: 09/30/2022 7:31:08AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of SOCR-0.05

Client Sample ID: SOCR-0.05 Client Project ID: WHADA Lab Sample ID: 1225537001 Lab Project ID: 1225537 Collection Date: 09/13/22 11:06 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	19900	500	150	ug/L	1		09/28/22 19:33
Magnesium	4460	50.0	15.0	ug/L	1		09/28/22 19:33

Batch Information

Analytical Batch: MMS11698 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/28/22 19:33 Container ID: 1225537001-B Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 09/19/22 13:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	68.0	5.00	5.00	mg/L	1		09/28/22 19:33

Batch Information

Analytical Batch: MMS11698 Analytical Method: SM21 2340B

Analyst: HGS

Analytical Date/Time: 09/28/22 19:33 Container ID: 1225537001-B Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 09/19/22 13:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Results of SOCR-0.05

Client Sample ID: **SOCR-0.05** Client Project ID: **WHADA** Lab Sample ID: 1225537001 Lab Project ID: 1225537 Collection Date: 09/13/22 11:06 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

Allowable Parameter Result Qual LOQ/CL DL Units <u>DF</u> Date Analyzed **Limits** Total Nitrate/Nitrite-N 0.200 U 0.200 0.0500 mg/L 2 09/27/22 13:02

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 09/27/22 13:02 Container ID: 1225537001-C

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Date Analyzed **Limits** Total Phosphorus 0.0800 0.0400 0.0120 09/28/22 17:23 mg/L 1

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 09/28/22 17:23 Container ID: 1225537001-C Prep Batch: WXX14475 Prep Method: SM21 4500P-B,E Prep Date/Time: 09/28/22 08:38 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Allowable LOQ/CL Date Analyzed Parameter Result Qual DL <u>Units</u> <u>DF</u> Limits Total Kjeldahl Nitrogen 1.00 U 1.00 0.310 1 09/16/22 17:44 mg/L

Batch Information

Analytical Batch: WDA5324 Analytical Method: SM23 4500-N D

Analyst: MEB

Analytical Date/Time: 09/16/22 17:44 Container ID: 1225537001-C Prep Batch: WXX14441
Prep Method: METHOD
Prep Date/Time: 09/16/22 12:14
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

Results of SOCR-0.05-DUP

Client Sample ID: SOCR-0.05-DUP

Client Project ID: **WHADA**Lab Sample ID: 1225537002
Lab Project ID: 1225537

Collection Date: 09/13/22 11:06 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	18900	500	150	ug/L	1		09/28/22 20:05
Magnesium	4450	50.0	15.0	ug/L	1		09/28/22 20:05

Batch Information

Analytical Batch: MMS11698 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/28/22 20:05 Container ID: 1225537002-B Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 09/19/22 13:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	65.4	5.00	5.00	mg/L	1		09/28/22 20:05

Batch Information

Analytical Batch: MMS11698 Analytical Method: SM21 2340B

Analyst: HGS

Analytical Date/Time: 09/28/22 20:05 Container ID: 1225537002-B Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 09/19/22 13:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Results of SOCR-0.05-DUP

Client Sample ID: SOCR-0.05-DUP

Client Project ID: **WHADA**Lab Sample ID: 1225537002
Lab Project ID: 1225537

Collection Date: 09/13/22 11:06 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

Allowable Parameter Result Qual LOQ/CL DL Units <u>DF</u> Date Analyzed **Limits** Total Nitrate/Nitrite-N 0.200 U 0.200 0.0500 mg/L 2 09/27/22 13:04

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 09/27/22 13:04 Container ID: 1225537002-C

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Date Analyzed **Limits** Total Phosphorus 0.0738 0.0400 0.0120 09/28/22 17:26 mg/L 1

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E

Analysts MER

Analyst: MEB

Analytical Date/Time: 09/28/22 17:26 Container ID: 1225537002-C Prep Batch: WXX14475 Prep Method: SM21 4500P-B,E Prep Date/Time: 09/28/22 08:38 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Allowable LOQ/CL Date Analyzed Parameter Result Qual DL <u>Units</u> <u>DF</u> Limits Total Kjeldahl Nitrogen 1.00 U 1.00 0.310 1 09/16/22 17:48 mg/L

Batch Information

Analytical Batch: WDA5324 Analytical Method: SM23 4500-N D

Analyst: MEB

Analytical Date/Time: 09/16/22 17:48 Container ID: 1225537002-C Prep Batch: WXX14441
Prep Method: METHOD
Prep Date/Time: 09/16/22 12:14
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

Results of SOCR-4.5

Client Sample ID: **SOCR-4.5**Client Project ID: **WHADA**Lab Sample ID: 1225537003
Lab Project ID: 1225537

Collection Date: 09/13/22 10:30 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	15300	500	150	ug/L	1		09/28/22 20:08
Magnesium	3560	50.0	15.0	ug/L	1		09/28/22 20:08

Batch Information

Analytical Batch: MMS11698 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/28/22 20:08 Container ID: 1225537003-B Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 09/19/22 13:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	52.9	5.00	5.00	mg/L	1		09/28/22 20:08

Batch Information

Analytical Batch: MMS11698 Analytical Method: SM21 2340B

Analyst: HGS

Analytical Date/Time: 09/28/22 20:08 Container ID: 1225537003-B Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 09/19/22 13:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Results of SOCR-4.5

Client Sample ID: **SOCR-4.5**Client Project ID: **WHADA**Lab Sample ID: 1225537003
Lab Project ID: 1225537

Collection Date: 09/13/22 10:30 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Nitrate/Nitrite-N	0.200 U	0.200	0.0500	mg/L	2		09/27/22 13:11

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 09/27/22 13:11 Container ID: 1225537003-C

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Phosphorus	0.0625	0.0400	0.0120	mg/L	1		09/28/22 17:26

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 09/28/22 17:26 Container ID: 1225537003-C Prep Batch: WXX14475 Prep Method: SM21 4500P-B,E Prep Date/Time: 09/28/22 08:38 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Total Kjeldahl Nitrogen	1.00 U	1.00	0.310	mg/L	1		09/16/22 17:49

Batch Information

Analytical Batch: WDA5324 Analytical Method: SM23 4500-N D

Analyst: MEB

Analytical Date/Time: 09/16/22 17:49 Container ID: 1225537003-C Prep Batch: WXX14441 Prep Method: METHOD Prep Date/Time: 09/16/22 12:14 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Results of SOCR-4.5-DUP

Client Sample ID: SOCR-4.5-DUP Client Project ID: WHADA Lab Sample ID: 1225537004 Lab Project ID: 1225537 Collection Date: 09/13/22 10:30 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	15600	500	150	ug/L	1		09/28/22 20:10
Magnesium	3570	50.0	15.0	ug/L	1		09/28/22 20:10

Batch Information

Analytical Batch: MMS11698 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/28/22 20:10 Container ID: 1225537004-B

Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 09/19/22 13:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	53.5	5.00	5.00	mg/L	1		09/28/22 20:10

Batch Information

Analytical Batch: MMS11698 Analytical Method: SM21 2340B

Analyst: HGS

Analytical Date/Time: 09/28/22 20:10 Container ID: 1225537004-B Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 09/19/22 13:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Results of SOCR-4.5-DUP

Client Sample ID: SOCR-4.5-DUP Client Project ID: WHADA Lab Sample ID: 1225537004 Lab Project ID: 1225537 Collection Date: 09/13/22 10:30 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

Allowable Parameter Result Qual LOQ/CL DL <u>Units</u> <u>DF</u> Date Analyzed **Limits** Total Nitrate/Nitrite-N 0.200 U 0.200 0.0500 mg/L 2 09/27/22 13:13

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 09/27/22 13:13 Container ID: 1225537004-C

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Phosphorus	0.0640	0.0400	0.0120	mg/L	1		09/28/22 17:27

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 09/28/22 17:27 Container ID: 1225537004-C Prep Batch: WXX14475 Prep Method: SM21 4500P-B,E Prep Date/Time: 09/28/22 08:38 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Kjeldahl Nitrogen	1.00 U	1.00	0.310	mg/L	1		09/16/22 17:50

Batch Information

Analytical Batch: WDA5324 Analytical Method: SM23 4500-N D

Analyst: MEB

Analytical Date/Time: 09/16/22 17:50 Container ID: 1225537004-C Prep Batch: WXX14441
Prep Method: METHOD
Prep Date/Time: 09/16/22 12:14
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

Results of SOCR-0.05

Client Sample ID: **SOCR-0.05** Client Project ID: **WHADA** Lab Sample ID: 1225537005 Lab Project ID: 1225537 Collection Date: 09/13/22 11:06 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
Aluminum	20.0 U	20.0	<u>52</u> 6.20	ug/L	<u>5. </u>	Limito	09/28/22 20:13
Antimony	1.00 U	1.00	0.310	ug/L	1		09/28/22 20:13
Arsenic	6.68	5.00	1.50	ug/L	1		09/28/22 20:13
Barium	11.2	3.00	0.940	ug/L	1		09/28/22 20:13
Beryllium	0.400 U	0.400	0.130	ug/L	1		09/28/22 20:13
Cadmium	0.500 U	0.500	0.150	ug/L	1		09/28/22 20:13
Calcium	19200	500	150	ug/L	1		09/28/22 20:13
Chromium	5.00 U	5.00	2.50	ug/L	1		09/28/22 20:13
Cobalt	4.00 U	4.00	1.20	ug/L	1		09/28/22 20:13
Copper	3.00 U	3.00	1.00	ug/L	1		09/28/22 20:13
Iron	250 U	250	78.0	ug/L	1		09/28/22 20:13
Lead	2.00 U	2.00	0.500	ug/L	1		09/28/22 20:13
Magnesium	4440	50.0	15.0	ug/L	1		09/28/22 20:13
Manganese	1.87	1.00	0.350	ug/L	1		09/28/22 20:13
Molybdenum	2.00 U	2.00	0.620	ug/L	1		09/28/22 20:13
Nickel	2.00 U	2.00	0.620	ug/L	1		09/28/22 20:13
Phosphorus	200 U	200	62.0	ug/L	1		09/28/22 20:13
Potassium	1990	500	150	ug/L	1		09/28/22 20:13
Selenium	5.00 U	5.00	1.50	ug/L	1		09/28/22 20:13
Silicon	10400	1000	310	ug/L	1		09/28/22 20:13
Silver	1.00 U	1.00	0.310	ug/L	1		09/28/22 20:13
Sodium	5740	500	150	ug/L	1		09/28/22 20:13
Thallium	1.00 U	1.00	0.310	ug/L	1		09/28/22 20:13
Tin	1.00 U	1.00	0.310	ug/L	1		09/28/22 20:13
Titanium	6.25 U	6.25	3.13	ug/L	1		09/28/22 20:13
Vanadium	20.0 U	20.0	6.20	ug/L	1		09/28/22 20:13
Zinc	32.6	10.0	3.10	ug/L	1		09/28/22 20:13

Batch Information

Analytical Batch: MMS11698 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/28/22 20:13 Container ID: 1225537005-B Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 09/19/22 13:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Results of SOCR-0.05

Client Sample ID: SOCR-0.05 Client Project ID: WHADA Lab Sample ID: 1225537005 Lab Project ID: 1225537 Collection Date: 09/13/22 11:06 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
TOC Average, Dissolved	8.98	1.00	0.400	mg/L	1		09/26/22 21:03

Batch Information

Analytical Batch: WTC3239 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 09/26/22 21:03 Container ID: 1225537005-D

Results of SOCR-0.05-DUP

Client Sample ID: SOCR-0.05-DUP

Client Project ID: **WHADA**Lab Sample ID: 1225537006
Lab Project ID: 1225537

Collection Date: 09/13/22 11:06 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
Aluminum	20.0 U	20.0	6.20	ug/L	1	09/28/22 20:16
Antimony	1.00 U	1.00	0.310	ug/L	1	09/28/22 20:16
Arsenic	6.37	5.00	1.50	ug/L	1	09/28/22 20:16
Barium	11.0	3.00	0.940	ug/L	1	09/28/22 20:16
Beryllium	0.400 U	0.400	0.130	ug/L	1	09/28/22 20:16
Cadmium	0.500 U	0.500	0.150	ug/L	1	09/28/22 20:16
Calcium	19200	500	150	ug/L	1	09/28/22 20:16
Chromium	5.00 U	5.00	2.50	ug/L	1	09/28/22 20:16
Cobalt	4.00 U	4.00	1.20	ug/L	1	09/28/22 20:16
Copper	3.00 U	3.00	1.00	ug/L	1	09/28/22 20:16
Iron	250 U	250	78.0	ug/L	1	09/28/22 20:16
Lead	2.00 U	2.00	0.500	ug/L	1	09/28/22 20:16
Magnesium	4440	50.0	15.0	ug/L	1	09/28/22 20:16
Manganese	2.36	1.00	0.350	ug/L	1	09/28/22 20:16
Molybdenum	2.00 U	2.00	0.620	ug/L	1	09/28/22 20:16
Nickel	2.00 U	2.00	0.620	ug/L	1	09/28/22 20:16
Phosphorus	200 U	200	62.0	ug/L	1	09/28/22 20:16
Potassium	1990	500	150	ug/L	1	09/28/22 20:16
Selenium	5.00 U	5.00	1.50	ug/L	1	09/28/22 20:16
Silicon	10400	1000	310	ug/L	1	09/28/22 20:16
Silver	1.00 U	1.00	0.310	ug/L	1	09/28/22 20:16
Sodium	5710	500	150	ug/L	1	09/28/22 20:16
Thallium	1.00 U	1.00	0.310	ug/L	1	09/28/22 20:16
Tin	1.00 U	1.00	0.310	ug/L	1	09/28/22 20:16
Titanium	6.25 U	6.25	3.13	ug/L	1	09/28/22 20:16
Vanadium	20.0 U	20.0	6.20	ug/L	1	09/28/22 20:16
Zinc	10.0 U	10.0	3.10	ug/L	1	09/28/22 20:16

Batch Information

Analytical Batch: MMS11698 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/28/22 20:16 Container ID: 1225537006-B Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 09/19/22 13:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Results of SOCR-0.05-DUP

Client Sample ID: SOCR-0.05-DUP

Client Project ID: **WHADA**Lab Sample ID: 1225537006
Lab Project ID: 1225537

Collection Date: 09/13/22 11:06 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF <u>Limits</u> Date Analyzed 8.97 mg/L TOC Average, Dissolved 1.00 0.400 1 09/26/22 21:22

Batch Information

Analytical Batch: WTC3239 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 09/26/22 21:22 Container ID: 1225537006-D

Results of SOCR-4.5

Client Sample ID: **SOCR-4.5**Client Project ID: **WHADA**Lab Sample ID: 1225537007
Lab Project ID: 1225537

Collection Date: 09/13/22 10:30 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Aluminum	20.0 U	20.0	6.20	ug/L	1		09/28/22 20:24
Antimony	1.00 U	1.00	0.310	ug/L	1		09/28/22 20:24
Arsenic	8.08	5.00	1.50	ug/L	1		09/28/22 20:24
Barium	8.91	3.00	0.940	ug/L	1		09/28/22 20:24
Beryllium	0.400 U	0.400	0.130	ug/L	1		09/28/22 20:24
Cadmium	0.500 U	0.500	0.150	ug/L	1		09/28/22 20:24
Calcium	15600	500	150	ug/L	1		09/28/22 20:24
Chromium	5.00 U	5.00	2.50	ug/L	1		09/28/22 20:24
Cobalt	4.00 U	4.00	1.20	ug/L	1		09/28/22 20:24
Copper	3.00 U	3.00	1.00	ug/L	1		09/28/22 20:24
Iron	309	250	78.0	ug/L	1		09/28/22 20:24
Lead	2.00 U	2.00	0.500	ug/L	1		09/28/22 20:24
Magnesium	3580	50.0	15.0	ug/L	1		09/28/22 20:24
Manganese	2.46	1.00	0.350	ug/L	1		09/28/22 20:24
Molybdenum	2.00 U	2.00	0.620	ug/L	1		09/28/22 20:24
Nickel	2.00 U	2.00	0.620	ug/L	1		09/28/22 20:24
Phosphorus	200 U	200	62.0	ug/L	1		09/28/22 20:24
Potassium	1830	500	150	ug/L	1		09/28/22 20:24
Selenium	5.00 U	5.00	1.50	ug/L	1		09/28/22 20:24
Silicon	9550	1000	310	ug/L	1		09/28/22 20:24
Silver	1.00 U	1.00	0.310	ug/L	1		09/28/22 20:24
Sodium	3660	500	150	ug/L	1		09/28/22 20:24
Thallium	1.00 U	1.00	0.310	ug/L	1		09/28/22 20:24
Tin	1.00 U	1.00	0.310	ug/L	1		09/28/22 20:24
Titanium	6.25 U	6.25	3.13	ug/L	1		09/28/22 20:24
Vanadium	20.0 U	20.0	6.20	ug/L	1		09/28/22 20:24
Zinc	71.6	10.0	3.10	ug/L	1		09/28/22 20:24
				•			

Batch Information

Analytical Batch: MMS11698 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/28/22 20:24 Container ID: 1225537007-B Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 09/19/22 13:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Results of SOCR-4.5

Client Sample ID: **SOCR-4.5** Client Project ID: **WHADA** Lab Sample ID: 1225537007 Lab Project ID: 1225537 Collection Date: 09/13/22 10:30 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
TOC Average, Dissolved	9.73	1.00	0.400	mg/L	1		09/26/22 21:40

Batch Information

Analytical Batch: WTC3239 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 09/26/22 21:40 Container ID: 1225537007-D

Results of SOCR-4.5-DUP

Client Sample ID: SOCR-4.5-DUP Client Project ID: WHADA Lab Sample ID: 1225537008 Lab Project ID: 1225537 Collection Date: 09/13/22 10:30 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
Aluminum	20.0 U	20.0	6.20	ug/L	1	09/28/22 20:26
Antimony	1.00 U	1.00	0.310	ug/L	1	09/28/22 20:26
Arsenic	8.44	5.00	1.50	ug/L	1	09/28/22 20:26
Barium	8.60	3.00	0.940	ug/L	1	09/28/22 20:26
Beryllium	0.400 U	0.400	0.130	ug/L	1	09/28/22 20:26
Cadmium	0.500 U	0.500	0.150	ug/L	1	09/28/22 20:26
Calcium	15300	500	150	ug/L	1	09/28/22 20:26
Chromium	5.00 U	5.00	2.50	ug/L	1	09/28/22 20:26
Cobalt	4.00 U	4.00	1.20	ug/L	1	09/28/22 20:26
Copper	3.00 U	3.00	1.00	ug/L	1	09/28/22 20:26
Iron	335	250	78.0	ug/L	1	09/28/22 20:26
Lead	2.00 U	2.00	0.500	ug/L	1	09/28/22 20:26
Magnesium	3500	50.0	15.0	ug/L	1	09/28/22 20:26
Manganese	2.70	1.00	0.350	ug/L	1	09/28/22 20:26
Molybdenum	2.00 U	2.00	0.620	ug/L	1	09/28/22 20:26
Nickel	2.00 U	2.00	0.620	ug/L	1	09/28/22 20:26
Phosphorus	200 U	200	62.0	ug/L	1	09/28/22 20:26
Potassium	1790	500	150	ug/L	1	09/28/22 20:26
Selenium	5.00 U	5.00	1.50	ug/L	1	09/28/22 20:26
Silicon	9410	1000	310	ug/L	1	09/28/22 20:26
Silver	1.00 U	1.00	0.310	ug/L	1	09/28/22 20:26
Sodium	3560	500	150	ug/L	1	09/28/22 20:26
Thallium	1.00 U	1.00	0.310	ug/L	1	09/28/22 20:26
Tin	1.00 U	1.00	0.310	ug/L	1	09/28/22 20:26
Titanium	6.25 U	6.25	3.13	ug/L	1	09/28/22 20:26
Vanadium	20.0 U	20.0	6.20	ug/L	1	09/28/22 20:26
Zinc	10.0 U	10.0	3.10	ug/L	1	09/28/22 20:26

Batch Information

Analytical Batch: MMS11698 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/28/22 20:26 Container ID: 1225537008-B Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 09/19/22 13:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Results of SOCR-4.5-DUP

Client Sample ID: SOCR-4.5-DUP Client Project ID: WHADA Lab Sample ID: 1225537008 Lab Project ID: 1225537 Collection Date: 09/13/22 10:30 Received Date: 09/13/22 13:52 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
TOC Average, Dissolved	9.76	1.00	0.400	mg/L	1		09/26/22 21:59

Batch Information

Analytical Batch: WTC3239 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 09/26/22 21:59 Container ID: 1225537008-D

Blank ID: MB for HBN 1843924 [MXX/35472]

Blank Lab ID: 1686470

QC for Samples:

1225537001, 1225537002, 1225537003, 1225537004, 1225537005, 1225537006, 1225537007, 1225537008

Results by EP200.8

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Aluminum	10.0U	20.0	6.20	ug/L
Antimony	0.500U	1.00	0.310	ug/L
Arsenic	2.50U	5.00	1.50	ug/L
Barium	1.50U	3.00	0.940	ug/L
Beryllium	0.200U	0.400	0.130	ug/L
Cadmium	0.250U	0.500	0.150	ug/L
Calcium	250U	500	150	ug/L
Chromium	2.50U	5.00	2.50	ug/L
Cobalt	2.00U	4.00	1.20	ug/L
Copper	1.50U	3.00	1.00	ug/L
Iron	125U	250	78.0	ug/L
Lead	1.00U	2.00	0.500	ug/L
Magnesium	25.0U	50.0	15.0	ug/L
Manganese	0.500U	1.00	0.350	ug/L
Molybdenum	1.00U	2.00	0.620	ug/L
Nickel	1.00U	2.00	0.620	ug/L
Phosphorus	100U	200	62.0	ug/L
Potassium	250U	500	150	ug/L
Selenium	2.50U	5.00	1.50	ug/L
Silicon	500U	1000	310	ug/L
Silver	0.500U	1.00	0.310	ug/L
Sodium	250U	500	150	ug/L
Thallium	0.500U	1.00	0.310	ug/L
Tin	0.500U	1.00	0.310	ug/L
Titanium	12.5U	25.0	7.75	ug/L
Vanadium	10.0U	20.0	6.20	ug/L
Zinc	4.91J	10.0	3.10	ug/L

Batch Information

Analytical Batch: MMS11698 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 9/28/2022 7:25:22PM

Prep Batch: MXX35472 Prep Method: E200.2

Prep Date/Time: 9/19/2022 1:30:53PM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Blank Spike ID: LCS for HBN 1225537 [MXX35472]

Blank Spike Lab ID: 1686471 Date Analyzed: 09/28/2022 19:28

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225537001, 1225537002, 1225537003, 1225537004, 1225537005, 1225537006, 1225537007,

1225537008

Results by EP200.8

		Blank Spike	e (ug/L)	
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>
Aluminum	1000	966	97	(85-115)
Antimony	1000	1010	101	(85-115)
Arsenic	1000	973	97	(85-115)
Barium	1000	995	100	(85-115)
Beryllium	100	97.6	98	(85-115)
Cadmium	100	98.4	98	(85-115)
Calcium	10000	9730	97	(85-115)
Chromium	400	377	94	(85-115)
Cobalt	500	488	98	(85-115)
Copper	1000	985	99	(85-115)
Iron	5000	5340	107	(85-115)
Lead	1000	1010	101	(85-115)
Magnesium	10000	9780	98	(85-115)
Manganese	500	487	97	(85-115)
Molybdenum	400	370	93	(85-115)
Nickel	1000	967	97	(85-115)
Phosphorus	500	490	98	(85-115)
Potassium	10000	9970	100	(85-115)
Selenium	1000	1020	102	(85-115)
Silicon	10000	10100	101	(85-115)
Silver	100	96.5	97	(85-115)
Sodium	10000	9800	98	(85-115)
Thallium	10	9.92	99	(85-115)
Tin	100	97.6	98	(85-115)
Titanium	100	99.6	100	(85-115)
Vanadium	200	185	92	(85-115)
Zinc	1000	980	98	(85-115)

Batch Information

Analytical Batch: MMS11698 Analytical Method: EP200.8

Instrument: P7 Agilent 7800

Analyst: HGS

Prep Batch: MXX35472
Prep Method: E200.2

Prep Date/Time: 09/19/2022 13:30

Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Original Sample ID: 1686468 MS Sample ID: 1686473 MS

MSD Sample ID:

QC for Samples: 1225537001

Analysis Date: 09/28/2022 19:33 Analysis Date: 09/28/2022 19:36

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

100000		Matrix Spike (ug/L)		Spike Duplicate (ug/L)						
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Aluminum	46.5	1000	1010	96				70-130		
Antimony	0.500U	1000	1020	102				70-130		
Arsenic	10.5	1000	991	98				70-130		
Barium	17.1	1000	1010	100				70-130		
Beryllium	0.200U	100	96.4	96				70-130		
Cadmium	0.250U	100	97.7	98				70-130		
Calcium	19900	10000	29100	92				70-130		
Chromium	2.50U	400	371	93				70-130		
Cobalt	2.00U	500	484	97				70-130		
Copper	1.50U	1000	973	97				70-130		
Iron	821	5000	6050	105				70-130		
Lead	1.00U	1000	1000	100				70-130		
Magnesium	4460	10000	14000	96				70-130		
Manganese	283	500	760	96				70-130		
Molybdenum	1.03J	400	370	92				70-130		
Nickel	1.00U	1000	953	95				70-130		
Phosphorus	83.0J	500	559	95				70-130		
Potassium	2020	10000	12000	100				70-130		
Selenium	2.50U	1000	1010	101				70-130		
Silicon	10700	10000	20700	100				70-130		
Silver	0.500U	100	97.1	97				70-130		
Sodium	5630	10000	15300	97				70-130		
Thallium	0.500U	10.0	9.92	99				70-130		
Tin	0.500U	100	97.6	98				70-130		
Titanium	12.5U	100	103	103				70-130		
Vanadium	10.0U	200	185	92				70-130		
Zinc	25.9	1000	981	96				70-130		

Batch Information

Analytical Batch: MMS11698 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 9/28/2022 7:36:00PM

Prep Batch: MXX35472

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 9/19/2022 1:30:53PM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

 Original Sample ID: 1686469
 Analysis Date: 09/28/2022 19:38

 MS Sample ID: 1686474 MS
 Analysis Date: 09/28/2022 19:41

MSD Sample ID:

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225537002, 1225537003, 1225537004, 1225537005, 1225537006, 1225537007, 1225537008

Results by EP200.8

		Ma	Matrix Spike (ug/L)		Spike Duplicate (ug/L)				· ·	
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Aluminum	43.6	1000	1000	96				70-130		
Antimony	0.500U	1000	1020	102				70-130		
Arsenic	2.50U	1000	978	98				70-130		
Barium	16.7	1000	1020	100				70-130		
Beryllium	0.200U	100	96.6	97				70-130		
Cadmium	0.250U	100	98.1	98				70-130		
Calcium	25700	10000	35300	96				70-130		
Chromium	2.50U	400	378	95				70-130		
Cobalt	2.00U	500	486	97				70-130		
Copper	1.50U	1000	977	98				70-130		
Iron	125U	5000	5420	108				70-130		
Lead	1.00U	1000	1000	100				70-130		
Magnesium	1260	10000	10900	96				70-130		
Manganese	19.2	500	505	97				70-130		
Molybdenum	3.17	400	375	93				70-130		
Nickel	1.00U	1000	961	96				70-130		
Phosphorus	100U	500	499	100				70-130		
Potassium	777	10000	10700	100				70-130		
Selenium	2.50U	1000	1020	102				70-130		
Silicon	1680	10000	11700	101				70-130		
Silver	0.500U	100	96.8	97				70-130		
Sodium	4070	10000	13700	96				70-130		
Thallium	0.500U	10.0	9.85	99				70-130		
Tin	0.500U	100	98.5	99				70-130		
Titanium	12.5U	100	102	102				70-130		
Vanadium	10.0U	200	186	93				70-130		
Zinc	41.2	1000	1020	98				70-130		

Batch Information

Analytical Batch: MMS11698 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 9/28/2022 7:41:00PM

Prep Batch: MXX35472

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 9/19/2022 1:30:53PM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Blank ID: MB for HBN 1844315 (WFI/3006)

Blank Lab ID: 1688150

QC for Samples:

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500NO3-F

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Nitrate-N	0.100U	0.200	0.0500	mg/L
Nitrite-N	0.100U	0.200	0.0500	mg/L
Total Nitrate/Nitrite-N	0.100U	0.200	0.0500	mg/L

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 9/27/2022 2:16:28PM

Blank ID: MB for HBN 1844315 (WFI/3006)

Blank Lab ID: 1688156

QC for Samples:

1225537001, 1225537002, 1225537003, 1225537004

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500NO3-F

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Nitrate-N	0.100U	0.200	0.0500	mg/L
Nitrite-N	0.100U	0.200	0.0500	mg/L
Total Nitrate/Nitrite-N	0.100U	0.200	0.0500	mg/L

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 9/27/2022 1:30:58PM

Blank ID: MB for HBN 1844315 (WFI/3006)

Blank Lab ID: 1688162

QC for Samples:

1225537001, 1225537002, 1225537003, 1225537004

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500NO3-F

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Nitrate-N	0.100U	0.200	0.0500	mg/L
Nitrite-N	0.100U	0.200	0.0500	mg/L
Total Nitrate/Nitrite-N	0.100U	0.200	0.0500	mg/L

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 9/27/2022 12:45:27PM

Blank Spike ID: LCS for HBN 1225537 [WFI3006]

Blank Spike Lab ID: 1688152 Date Analyzed: 09/27/2022 14:14

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

Results by SM21 4500NO3-F

Blank Spike (mg/L)					
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>	
Nitrate-N	2.5	2.50	100	(70-130)	
Nitrite-N	2.5	2.57	103	(90-110)	
Total Nitrate/Nitrite-N	5	5.07	101	(90-110)	

Batch Information

Analytical Batch: WFI3006

Analytical Method: **SM21 4500NO3-F** Instrument: **Astoria segmented flow**

Analyst: **EBH**

Blank Spike ID: LCS for HBN 1225537 [WFI3006]

Blank Spike Lab ID: 1688158 Date Analyzed: 09/27/2022 13:29

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225537001, 1225537002, 1225537003, 1225537004

Results by SM21 4500NO3-F

Blank Spike (mg/L)					
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>	
Nitrate-N	2.5	2.85	114	(70-130)	
Nitrite-N	2.5	2.59	103	(90-110)	
Total Nitrate/Nitrite-N	5	5.44	109	(90-110)	

Batch Information

Analytical Batch: WFI3006

Analytical Method: **SM21 4500NO3-F** Instrument: **Astoria segmented flow**

Analyst: **EBH**

Blank Spike ID: LCS for HBN 1225537 [WFI3006]

Blank Spike Lab ID: 1688164 Date Analyzed: 09/27/2022 12:43

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225537001, 1225537002, 1225537003, 1225537004

Results by SM21 4500NO3-F

Blank Spike (mg/L)					
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	
Nitrate-N	2.5	2.47	99	(70-130)	
Nitrite-N	2.5	2.58	103	(90-110)	
Total Nitrate/Nitrite-N	5	5.05	101	(90-110)	

Batch Information

Analytical Batch: WFI3006

Analytical Method: **SM21 4500NO3-F** Instrument: **Astoria segmented flow**

Analyst: **EBH**

Original Sample ID: 1688128 MS Sample ID: 1688129 MS MSD Sample ID: 1688130 MSD

QC for Samples:

Analysis Date: 09/27/2022 12:41 Analysis Date: 09/27/2022 11:59 Analysis Date: 09/27/2022 12:01 Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500NO3-F

Matrix Spike (mg/L) Spike Duplicate (mg/L)

<u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL Total Nitrate/Nitrite-N 0.591 5.00 5.59 100 5.00 5.63 101 90-110 0.58 (< 25)

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 9/27/2022 11:59:00AM

Original Sample ID: 1225513013 MS Sample ID: 1688131 MS MSD Sample ID: 1688132 MSD Analysis Date: 09/27/2022 12:48 Analysis Date: 09/27/2022 12:50 Analysis Date: 09/27/2022 12:52 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225537001, 1225537002, 1225537003, 1225537004

Results by SM21 4500NO3-F

Matrix Spike (mg/L) Spike Duplicate (mg/L)

<u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL Total Nitrate/Nitrite-N 0.0570J 5.00 4.89 97 5.00 5.14 102 90-110 5.10 (< 25)

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 9/27/2022 12:50:00PM

Original Sample ID: 1225613001 MS Sample ID: 1688133 MS MSD Sample ID: 1688134 MSD Analysis Date: 09/27/2022 13:34 Analysis Date: 09/27/2022 13:36 Analysis Date: 09/27/2022 13:37 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225537001, 1225537002, 1225537003, 1225537004

Results by SM21 4500NO3-F

Matrix Spike (mg/L) Spike Duplicate (mg/L)

Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL

 Parameter
 Sample
 Spike
 Result
 Rec (%)
 Spike
 Result
 Rec (%)
 CL
 RPD (%)
 RPD CL

 Total Nitrate/Nitrite-N
 0.200U
 5.00
 5.17
 103
 5.00
 5.41
 108
 90-110
 4.50
 (< 25)</td>

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 9/27/2022 1:36:00PM

Blank ID: MB for HBN 1843849 [WXX/14441]

Blank Lab ID: 1686139

QC for Samples:

1225537001, 1225537002, 1225537003, 1225537004

Matrix: Water (Surface, Eff., Ground)

Results by SM23 4500-N D

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Kjeldahl Nitrogen
 0.500U
 1.00
 0.310
 mg/L

Batch Information

Analytical Batch: WDA5324 Analytical Method: SM23 4500-N D Instrument: Discrete Analyzer 2

Analyst: MEB

Analytical Date/Time: 9/16/2022 5:16:00PM

Prep Batch: WXX14441 Prep Method: METHOD

Prep Date/Time: 9/16/2022 12:14:00PM

Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225537 [WXX14441]

Blank Spike Lab ID: 1686140 Date Analyzed: 09/16/2022 17:18 Spike Duplicate ID: LCSD for HBN 1225537

[WXX14441]

Spike Duplicate Lab ID: 1686141

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225537001, 1225537002, 1225537003, 1225537004

Results by SM23 4500-N D

		Blank Spike	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Total Kjeldahl Nitrogen	4	3.90	97	4	3.82	96	(75-125)	1.90	(< 25)

Batch Information

Analytical Batch: WDA5324
Analytical Method: SM23 4500-N D
Instrument: Discrete Analyzer 2

Analyst: MEB

Prep Batch: **WXX14441**Prep Method: **METHOD**

Prep Date/Time: 09/16/2022 12:14

Spike Init Wt./Vol.: 4 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: 4 mg/L Extract Vol: 25 mL

Print Date: 09/30/2022 7:31:31AM

Matrix Spike Summary

Original Sample ID: 1225059001 MS Sample ID: 1686142 MS MSD Sample ID: 1686143 MSD Analysis Date: 09/16/2022 17:24 Analysis Date: 09/16/2022 17:25 Analysis Date: 09/16/2022 17:27 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225537001, 1225537002, 1225537003, 1225537004

Results by SM23 4500-N D

Matrix Spike (mg/L) Spike Duplicate (mg/L) <u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) RPD (%) RPD CL CL Total Kjeldahl Nitrogen 1.00U 4.00 4.01 100 4.00 3.77 94 75-125 6.10 (< 25)

Batch Information

Analytical Batch: WDA5324 Analytical Method: SM23 4500-N D Instrument: Discrete Analyzer 2

Analyst: MEB

Analytical Date/Time: 9/16/2022 5:25:00PM

Prep Batch: WXX14441

Prep Method: Distillation TKN by Phenate (W) Prep Date/Time: 9/16/2022 12:14:00PM

Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 09/30/2022 7:31:33AM

Method Blank

Blank ID: MB for HBN 1844468 [WXX/14475]

Blank Lab ID: 1688627

QC for Samples:

1225537001, 1225537002, 1225537003, 1225537004

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500P-B,E

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Phosphorus
 0.0200U
 0.0400
 0.0120
 mg/L

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E Instrument: Discrete Analyzer 2

Analyst: MEB

Analytical Date/Time: 9/28/2022 5:14:00PM

Prep Batch: WXX14475 Prep Method: SM21 4500P-B,E Prep Date/Time: 9/28/2022 8:38:00AM

Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 09/30/2022 7:31:36AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225537 [WXX14475]

Blank Spike Lab ID: 1688628

Date Analyzed: 09/28/2022 17:15

Spike Duplicate ID: LCSD for HBN 1225537

[WXX14475]

Spike Duplicate Lab ID: 1688629

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225537001, 1225537002, 1225537003, 1225537004

Results by SM21 4500P-B,E

Blank Spike (mg/L) Spike Duplicate (mg/L)

<u>Parameter</u> Rec (%) Spike Result Rec (%) Spike RPD (%) RPD CL Result **Total Phosphorus** 0.206 0.2 0.198 (< 25)0.2 103 99 (75-125)3.70

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E Instrument: Discrete Analyzer 2

Analyst: MEB

Prep Batch: WXX14475
Prep Method: SM21 4500P-B,E
Prep Date/Time: 09/28/2022 08:38

Spike Init Wt./Vol.: 0.2 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: 0.2 mg/L Extract Vol: 25 mL

Print Date: 09/30/2022 7:31:38AM

Matrix Spike Summary

Original Sample ID: 1225456001 MS Sample ID: 1688630 MS MSD Sample ID: 1688631 MSD Analysis Date: 09/28/2022 18:45 Analysis Date: 09/28/2022 18:45 Analysis Date: 09/28/2022 18:46 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225537001, 1225537002, 1225537003, 1225537004

Results by SM21 4500P-B,E

		Matrix Spike (mg/L)			Spike Duplicate (mg/L)					
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Total Phosphorus	1.39	4.00	5.57	105	4.00	5.57	105	75-125	0.07	(< 10)

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E Instrument: Discrete Analyzer 2

Analyst: MEB

Analytical Date/Time: 9/28/2022 6:45:00PM

Prep Batch: WXX14475

Prep Method: Total Phosphorus (W) Ext. Prep Date/Time: 9/28/2022 8:38:00AM

Prep Initial Wt./Vol.: 1.25mL Prep Extract Vol: 25.00mL

Print Date: 09/30/2022 7:31:39AM

RELINQUISHED/BY:(4)

SGS NORTH AMERICA INC. CHAIN OF CUSTODY RECORD

Profile # 38 5380 PBR INSTRUCTIONS SECTIONS 1-5 MUST BE FILLED OUT. CLIENT: **ADEC** OMISSIONS MAY DELAY THE ONSET OF ANALYSIS. Page 1 of CONTACT: Morgan Brown PHONE #: 907-451-2141 **SECTION 3 PRESERVATIVE** HN03 PROJECT/ Na2SO4 PROJECT NTP 22 464 **WHADA** SAMPLE PWSID/ NAME: PERMIT#: TYPE: E-MAIL: Morgan.Brown@alaska.gov 0 윈 응 REPORTS TO: Morgan Brown Comp 2340B Total hardness 5310B DOC (Lab Filter) N02 Ν Grab 245.1 Total 200.8 Diss Metals (Lab Filter) SM4500 T-Phos, 1 +NO3,TKN ші SM9222D Fecal Coliform QUOTE #: INVOICE TO: ADEC SM9223B (Multi-P.O. #: Ν incre-MATRIX/ Ε RESERVED mental) DATE TIME REMARKS/ R FOR LAB SAMPLE IDENTIFICATION MATRIX MM/DD/YY HH:MM LOC ID S CODE 5 × X SOCK - 0.55 9/13/22 Gab 11:06 W X × 11:06 X 6AD SO (x - 0.05-DUP × X × 10:30 X × × 10:30 No DATA DELIVERABLE REQUIREMENTS: SECTION 4 DOD Project? DATE TIME RECEIVED BY: RELINQUISHED BY: (1) COC ID: 11:55 9/13/22 Cooler ID: REQUESTED TURNAROUND TIME AND/OR SPECIAL INSTRUCTIONS RECEIVED BY: RELINQUISHED BY:(2) TIME DATE SECTION RECEIVED BY: RELINQUISHED BY:(3) DATE TIME

RECEIVED FOR LABORATORY BY:

TIME

DATE

(See attached Sample Receipt Form) http://www.sgs.com/terms-and-conditions

CHAIN OF CUSTODY SEAL: (CIRCLE)

INTACT BROKEN ABSENT

OR AMBIENT []

(See attached Sample Receipt Form

AIRBILL 10481294

I hereby declare that the goods contained herein do not contain dangerous goods.

Date

Grant Aviation

6420 Kulis Dr. Anchorage, AK 99502

Phone: 1 (888) 359-4726 🌹 Freephone: 1 (888) 359-4726

Email: res@flygrant.com Web: http://www.flygrant.com/ GRANT AVIATION

FREIGHT DETAILS

FROM/TO: Kenai -> Anchorage International

Receiver: sgs attn justin

Sender: Department of environmental conservation

nelson 907-206-1339

907-451-2141

Flight Departs: Sep 13 22 12:40 PM

Accepted: Tue, Sep 13 22 12:02:00 PM

50. 200 200					
Description & Comment	Quan.	Wgt.	Handle Fee	Hazmat Fee	Total
Water samples in fish box	1	17	· , -	-	\$28.24
				Total Tax:	\$1.76
			Total Pa	yments made:	\$30.00
Received in good condition by:			T	otal Unpaid:	\$0.00

CUSTOMER COPY

AIRBILL 10481294

I hereby declare that the goods contained herein do not contain dangerous goods.

Grant Aviation

6420 Kulis Dr. Anchorage, AK 99502

Phone: 1 (888) 359-4726 Freephone: 1 (888) 359-4726

Email: res@flygrant.com

Web: http://www.flygrant.com/

FREIGHT DETAILS

FROM/TO: Kenai -> Anchorage International

Receiver: sgs attn justin nelson 907-206-1339

Sender: Department of

907-451-2141

environmental conservation

Flight Departs: Sep 13 22 12:40 PM Accepted: Tue, Sep 13 22 12:02:00 PM

30, 101 11.1					
Description & Comment	Quan.	Wgt.	Handle Fee	Hazmat Fee	Total
Water samples in fish box	1	17	-	-	\$28.24
TAX: Federal Excise Tax		•			\$1.76
			Total Pa	yments made:	\$30.00
			To	otal Unpaid:	\$0.00

TERMS AND CONDITIONS

Consignemnt Note Text

#420433

Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

Date	- 12ADA		M 4
110111		and the same of th	
то	1665	m	
Collect □	Prepay □		ce Charges 🗆
Job# ENA	PO# Cra.	11/01/8	1294
			. *.
Consult of the second	undes		
		naparate.	
		- Marie Carlotte Control of the Cont	
<u> </u>			
a. <u>24 . 7 </u>	And the second s		
Shipped Signature	and the same of th	\rightarrow	
	The state of the s		
	L	Total Charge	
Received By:	A Committee of the Comm	44 of 0	5

000	e-Samp	le Receipt F	orm	
SGS	SGS Workorder #:	12	225537	1225537
R	eview Criteria	Condition (Yes, No	, N/A E	xceptions Noted below
	dy / Temperature Requirements		ote: Temperature and COC se	eal information is found on the chain of custody form
DOD only: Did all sa	ample coolers have a corresponding			
	If <0°C, were sample containers ice			
	Note containers receive	ed with ice:		
	ntainers received at non-compliant tel	is needed)		
	<u>-</u>		ote: Refer to form F-083 "Sample	e Guide" for specific holding times and sample containers.
	ples received within analytical holding			
Do sample	labels match COC? Record discrepa	ncies. Yes		
	containers differs from COC, default			
information for login. If tin	nes differ <1hr, record details & login	per COC.		
	Were analytical requests	clear? Yes		
•	or analyses with multiple option for m 1 vs 8260, Metals 6020 vs 200.8)	ethod		
· · ·	ers (type/mass/volume/preservative)u			
Note: Exemption for	r metals analysis by 200.8/6020 in wa	ater.		
Volatile Analysis R	equirements (VOC, GRO, LL-Hg	, etc.)		
Vere all soil VOAs receive	d with a corresponding % solids conta	ainer? N/A		
• ,	e.g., VOAs, LL-Hg) in cooler with sam			
	free of headspace (e.g., bubbles ≤ 6	<i>'</i>		
	VOAs field extracted with Methanol+			
Note to Client: An	y "No", answer above indicates non-			ires and may impact data quality.
	<u>Additional</u>	notes (if ap	plicable):	

F102b_SRFpm_20210526 45 of 65

Sample Containers and Preservatives

1225537001-A HN03 to pH < 2 OK 1225537001-B HN03 to pH < 2 OK 1225537002-C H2SO4 to pH < 2 OK 1225537002-B HN03 to pH < 2 OK 1225537002-B HN03 to pH < 2 OK 1225537003-C H2SO4 to pH < 2 OK 1225537003-A HN03 to pH < 2 OK 1225537003-B HN03 to pH < 2 OK 1225537003-C H2SO4 to pH < 2 OK 1225537004-A HN03 to pH < 2 OK 1225537004-B HN03 to pH < 2 OK 1225537005-C H2SO4 to pH < 2 OK 1225537005-B HN03 to pH < 2 OK 1225537005-B HN03 to pH < 2 OK 1225537005-C No Preservative Required OK 1225537005-B HCL to pH < 2 OK 1225537006-B HN03 to pH < 2 OK 1225537006-C No Preservative Required OK 1225537006-D HCL to pH < 2 OK 1225537007-B HN03 to pH < 2 OK 1225537007-B HN03 to pH < 2 OK <	Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1225537001-C H2SO4 to pH < 2 OK 1225537002-A HNO3 to pH < 2 OK 1225537002-B HNO3 to pH < 2 OK 1225537002-B HNO3 to pH < 2 OK 1225537003-B HNO3 to pH < 2 OK 1225537003-B HNO3 to pH < 2 OK 1225537003-C H2SO4 to pH < 2 OK 1225537003-C H2SO4 to pH < 2 OK 1225537004-A HNO3 to pH < 2 OK 1225537004-A HNO3 to pH < 2 OK 1225537004-B HNO3 to pH < 2 OK 1225537004-B HNO3 to pH < 2 OK 1225537005-B HNO3 to pH < 2 OK 1225537005-A No Preservative Required OK 1225537005-C No Preservative Required OK 1225537005-D HCL to pH < 2 OK 1225537006-C No Preservative Required OK 1225537006-B HNO3 to pH < 2 OK 1225537006-B HNO3 to pH < 2 OK 1225537006-D HCL to pH < 2 OK 1225537006-D HCL to pH < 2 OK 1225537007-B HNO3 to pH < 2 OK 1225537007-D HCL to pH < 2 OK 1225537008-A No Preservative Required OK 1225537008-B HNO3 to pH < 2 OK	1225537001-A	HNO3 to pH < 2	ОК			
1225537002-A HNO3 to pH < 2 OK 1225537002-B HNO3 to pH < 2 OK 1225537002-C H2SO4 to pH < 2 OK 1225537003-A HNO3 to pH < 2 OK 1225537003-B HNO3 to pH < 2 OK 1225537003-B HNO3 to pH < 2 OK 1225537003-B HNO3 to pH < 2 OK 1225537004-C H2SO4 to pH < 2 OK 1225537004-A HNO3 to pH < 2 OK 1225537004-B HNO3 to pH < 2 OK 1225537005-A No Preservative Required OK 1225537005-B HNO3 to pH < 2 OK 1225537005-C No Preservative Required OK 1225537006-C No Preservative Required OK 1225537006-B HNO3 to pH < 2 OK 1225537006-B HNO3 to pH < 2 OK 1225537006-C No Preservative Required OK 1225537006-B HNO3 to pH < 2 OK 1225537006-C No Preservative Required OK 1225537006-D HCL to pH < 2 OK 1225537006-D HCL to pH < 2 OK 1225537007-D HCL to pH < 2 OK 1225537008-B HNO3 to pH < 2 OK	1225537001-B	HNO3 to pH < 2	OK			
1225537002-A HN03 to pH < 2	1225537001-C	H2SO4 to pH < 2	OK			
1225537002-C H2SO4 to pH < 2 OK 1225537003-A HNO3 to pH < 2 OK 1225537003-B HNO3 to pH < 2 OK 1225537003-C H2SO4 to pH < 2 OK 1225537004-A HNO3 to pH < 2 OK 1225537004-B HNO3 to pH < 2 OK 1225537004-C H2SO4 to pH < 2 OK 1225537005-A No Preservative Required OK 1225537005-B HNO3 to pH < 2 OK 1225537005-D HCL to pH < 2 OK 1225537006-A No Preservative Required OK 1225537006-A No Preservative Required OK 1225537006-B HNO3 to pH < 2 OK 1225537006-B HNO3 to pH < 2 OK 1225537006-B HNO3 to pH < 2 OK 1225537006-C No Preservative Required OK 1225537006-B HNO3 to pH < 2 OK 1225537006-D HCL to pH < 2 OK 1225537007-B HNO3 to pH < 2 OK 1225537007-A No Preservative Required OK 1225537007-B HNO3 to pH < 2 OK 1225537007-C No Preservative Required OK 1225537007-B HNO3 to pH < 2 OK 1225537007-B HNO3 to pH < 2 OK 1225537007-B HNO3 to pH < 2 OK 1225537008-B HNO3 to pH < 2 OK	1225537002-A	HNO3 to pH < 2				
1225537003-A HNO3 to pH < 2 OK 1225537003-B HNO3 to pH < 2 OK 1225537003-C H2SO4 to pH < 2 OK 1225537004-A HNO3 to pH < 2 OK 1225537004-B HNO3 to pH < 2 OK 1225537004-C H2SO4 to pH < 2 OK 1225537005-A No Preservative Required OK 1225537005-B HNO3 to pH < 2 OK 1225537005-C No Preservative Required OK 1225537006-B HNO3 to pH < 2 OK 1225537006-C No Preservative Required OK 1225537006-C No Preservative Required OK 1225537006-C No Preservative Required OK 1225537007-A No Preservative Required OK 1225537007-B HNO3 to pH < 2 OK 1225537007-B HNO3 to pH < 2 OK 1225537007-C No Preservative Required OK 1225537007-B HNO3 to pH < 2 OK 1225537007-B HNO3 to pH < 2 OK 1225537007-B HNO3 to pH < 2 OK 1225537007-B HCL to pH < 2 OK 1225537008-B HNO3 to pH < 2 OK	1225537002-B	HNO3 to pH < 2	ОК			
1225537003-B HNO3 to pH < 2 OK 1225537003-C H2SO4 to pH < 2 OK 1225537004-A HNO3 to pH < 2 OK 1225537004-B HNO3 to pH < 2 OK 1225537004-C H2SO4 to pH < 2 OK 1225537005-A No Preservative Required OK 1225537005-B HNO3 to pH < 2 OK 1225537005-C No Preservative Required OK 1225537006-D HCL to pH < 2 OK 1225537006-B HNO3 to pH < 2 OK 1225537006-C No Preservative Required OK 1225537006-B HNO3 to pH < 2 OK 1225537006-D HCL to pH < 2 OK 1225537007-A No Preservative Required OK 1225537007-B HNO3 to pH < 2 OK 1225537007-D HCL to pH < 2 OK 1225537007-D HCL to pH < 2 OK 1225537008-B HNO3 to pH < 2 OK 1225537008-B HNO3 to pH < 2 OK 1225537008-B HNO3 to pH < 2 OK	1225537002-C	H2SO4 to pH < 2	ОК			
1225537003-C H2SO4 to pH < 2 OK 1225537004-A HNO3 to pH < 2 OK 1225537004-B HNO3 to pH < 2 OK 1225537004-C H2SO4 to pH < 2 OK 1225537005-A No Preservative Required OK 1225537005-B HNO3 to pH < 2 OK 1225537005-C No Preservative Required OK 1225537005-D HCL to pH < 2 OK 1225537006-A No Preservative Required OK 1225537006-B HNO3 to pH < 2 OK 1225537006-C No Preservative Required OK 1225537006-D HCL to pH < 2 OK 1225537007-A No Preservative Required OK 1225537007-B HNO3 to pH < 2 OK 1225537007-B HNO3 to pH < 2 OK 1225537007-D HCL to pH < 2 OK 1225537007-D HCL to pH < 2 OK 1225537007-D HCL to pH < 2 OK 1225537008-A No Preservative Required OK 1225537008-B HNO3 to pH < 2 OK 1225537008-B HNO3 to pH < 2 OK 1225537008-C No Preservative Required OK 1225537008-C No Preservative Required OK	1225537003-A	HNO3 to pH < 2	ОК			
1225537004-A HNO3 to pH < 2 OK 1225537004-B HNO3 to pH < 2 OK 1225537004-C H2SO4 to pH < 2 OK 1225537005-A No Preservative Required OK 1225537005-B HNO3 to pH < 2 OK 1225537005-C No Preservative Required OK 1225537005-D HCL to pH < 2 OK 1225537006-A No Preservative Required OK 1225537006-B HNO3 to pH < 2 OK 1225537006-D HCL to pH < 2 OK 1225537007-D HCL to pH < 2 OK 1225537007-D HCL to pH < 2 OK 1225537007-B HNO3 to pH < 2 OK 1225537007-D HCL to pH < 2 OK 1225537007-D HCL to pH < 2 OK 1225537007-D HCL to pH < 2 OK 1225537008-A No Preservative Required OK 1225537008-B HNO3 to pH < 2 OK 1225537008-B HNO3 to pH < 2 OK 1225537008-B HNO3 to pH < 2 OK 1225537008-C No Preservative Required OK	1225537003-В	HNO3 to pH < 2	ОК			
1225537004-B HNO3 to pH < 2 OK 1225537004-C H2SO4 to pH < 2 OK 1225537005-A No Preservative Required OK 1225537005-B HNO3 to pH < 2 OK 1225537005-C No Preservative Required OK 1225537005-D HCL to pH < 2 OK 1225537006-A No Preservative Required OK 1225537006-B HNO3 to pH < 2 OK 1225537006-C No Preservative Required OK 1225537006-D HCL to pH < 2 OK 1225537006-D HCL to pH < 2 OK 1225537007-A No Preservative Required OK 1225537007-B HNO3 to pH < 2 OK 1225537007-C No Preservative Required OK 1225537007-D HCL to pH < 2 OK 1225537008-A No Preservative Required OK 1225537008-B HNO3 to pH < 2 OK 1225537008-C No Preservative Required OK 1225537008-C No Preservative Required OK	1225537003-C	H2SO4 to pH < 2	OK			
1225537004-C H2SO4 to pH < 2 OK 1225537005-A No Preservative Required OK 1225537005-B HNO3 to pH < 2 OK 1225537005-C No Preservative Required OK 1225537005-D HCL to pH < 2 OK 1225537006-A No Preservative Required OK 1225537006-B HNO3 to pH < 2 OK 1225537006-C No Preservative Required OK 1225537006-D HCL to pH < 2 OK 1225537006-D HCL to pH < 2 OK 1225537007-A No Preservative Required OK 1225537007-B HNO3 to pH < 2 OK 1225537007-C No Preservative Required OK 1225537007-D HCL to pH < 2 OK 1225537008-A No Preservative Required OK 1225537008-B HNO3 to pH < 2 OK 1225537008-B HNO3 to pH < 2 OK 1225537008-B HNO3 to pH < 2 OK 1225537008-C No Preservative Required OK 1225537008-C No Preservative Required OK	1225537004-A	HNO3 to pH < 2	ОК			
1225537005-A No Preservative Required OK 1225537005-B HNO3 to pH < 2	1225537004-B	HNO3 to pH < 2	ОК			
1225537005-B HNO3 to pH < 2	1225537004-C	H2SO4 to pH < 2	ОК			
1225537005-C No Preservative Required OK 1225537005-D HCL to pH < 2	1225537005-A	No Preservative Required	OK			
1225537006-D HCL to pH < 2 OK 1225537006-A No Preservative Required OK 1225537006-B HNO3 to pH < 2 OK 1225537006-C No Preservative Required OK 1225537006-D HCL to pH < 2 OK 1225537007-A No Preservative Required OK 1225537007-B HNO3 to pH < 2 OK 1225537007-C No Preservative Required OK 1225537007-D HCL to pH < 2 OK 1225537008-A No Preservative Required OK 1225537008-B HNO3 to pH < 2 OK 1225537008-B HNO3 to pH < 2 OK 1225537008-C No Preservative Required OK	1225537005-B	HNO3 to pH < 2	ОК			
1225537006-A No Preservative Required OK 1225537006-B HNO3 to pH < 2	1225537005-C	No Preservative Required	OK			
1225537006-B HNO3 to pH < 2 OK 1225537006-C No Preservative Required OK 1225537006-D HCL to pH < 2 OK 1225537007-A No Preservative Required OK 1225537007-B HNO3 to pH < 2 OK 1225537007-C No Preservative Required OK 1225537007-D HCL to pH < 2 OK 1225537008-A No Preservative Required OK 1225537008-B HNO3 to pH < 2 OK 1225537008-C No Preservative Required OK	1225537005-D	HCL to pH < 2	OK			
1225537006-C No Preservative Required OK 1225537006-D HCL to pH < 2 OK 1225537007-A No Preservative Required OK 1225537007-B HNO3 to pH < 2 OK 1225537007-C No Preservative Required OK 1225537007-D HCL to pH < 2 OK 1225537008-A No Preservative Required OK 1225537008-B HNO3 to pH < 2 OK 1225537008-C No Preservative Required OK	1225537006-A	No Preservative Required	OK			
1225537006-D HCL to pH < 2	1225537006-B	HNO3 to pH < 2	OK			
1225537007-A No Preservative Required OK 1225537007-B HNO3 to pH < 2	1225537006-C	No Preservative Required	OK			
1225537007-B HNO3 to pH < 2 OK 1225537007-C No Preservative Required OK 1225537007-D HCL to pH < 2 OK 1225537008-A No Preservative Required OK 1225537008-B HNO3 to pH < 2 OK 1225537008-C No Preservative Required OK	1225537006-D	HCL to pH < 2	OK			
1225537007-C No Preservative Required OK 1225537007-D HCL to pH < 2 OK 1225537008-A No Preservative Required OK 1225537008-B HNO3 to pH < 2 OK 1225537008-C No Preservative Required OK	1225537007-A	No Preservative Required	OK			
1225537007-D HCL to pH < 2 OK 1225537008-A No Preservative Required OK 1225537008-B HNO3 to pH < 2 OK 1225537008-C No Preservative Required OK	1225537007-В	HNO3 to pH < 2	OK			
1225537008-A No Preservative Required OK 1225537008-B HNO3 to pH < 2 OK 1225537008-C No Preservative Required OK	1225537007-C	No Preservative Required	OK			
1225537008-B HNO3 to pH < 2 OK 1225537008-C No Preservative Required OK	1225537007-D	HCL to pH < 2	OK			
1225537008-C No Preservative Required OK	1225537008-A	No Preservative Required	OK			
	1225537008-B	HNO3 to pH < 2	OK			
1225537008-D HCL to pH < 2 OK	1225537008-C	No Preservative Required	OK			
	1225537008-D	HCL to pH < 2	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Orlando, FL 09/22/22

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Technical Report for

SGS North America, Inc

1225537

SGS Job Number: FA98951

Sampling Date: 09/13/22

Report to:

SGS North America, Inc 200 W Potter Dr Anchorage, AK 99518 julie.shumway@sgs.com

ATTN: Julie Shumway

Total number of pages in report: 19

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Norm Farmer Technical Director

Client Service contact: Andrea Colby 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, IL, UT, VT, WA, WI, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-070

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	5
Section 4: Sample Results	6
4.1: FA98951-1: SOCR-0.05	7
4.2: FA98951-2: SOCR-0.05-DUP	8
4.3: FA98951-3: SOCR-4.5	9
4.4: FA98951-4: SOCR-4.5-DUP	10
Section 5: Misc. Forms	11
5.1: Chain of Custody	12
Section 6: Metals Analysis - QC Data Summaries	14
6.1: Prep QC MP41232: Hg	15

Sample Summary

SGS North America, Inc

1225537

Job No: FA98951

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FA98951-1	09/13/22	11:06	09/15/22	AQ	Water	SOCR-0.05
FA98951-2	09/13/22	11:06	09/15/22	AQ	Water	SOCR-0.05-DUP
FA98951-3	09/13/22	10:30	09/15/22	AQ	Water	SOCR-4.5
FA98951-4	09/13/22	10:30	09/15/22	AQ	Water	SOCR-4.5-DUP

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS North America, Inc Job No: FA98951

Site: 1225537 Report Date: 9/22/2022 1:28:26 PM

On 09/15/2022, 4 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc - Orlando. at a maximum corrected temperature of 2.6 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. - Orlando Job Number of FA98951 was assigned to the project.

Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals Analysis By Method EPA 245.1

Matrix: AQ Batch ID: MP41232

Sample(s) FA98857-1FMS, FA98857-1FMSD, FA98857-1FSDL, FA98857-1FDUP were used as the QC samples for metals. RPD(s) for Duplicate for Mercury are outside control limits for sample MP41232-D1. RPD acceptable due to low duplicate and sample concentrations.

SGS North America Inc. - Orlando certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc.- Orlando is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:
Kim Benham, Client Services (Signature on File)

Summary of Hits Job Number: FA98951

Account: SGS North America, Inc

Project: 1225537 **Collected:** 09/13/22

Lab Sample ID	Client Sample ID	Result/				
Analyte		Qual	\mathbf{RL}	MDL	Units	Method

FA98951-1 SOCR-0.05

No hits reported in this sample.

FA98951-2 SOCR-0.05-DUP

No hits reported in this sample.

FA98951-3 SOCR-4.5

No hits reported in this sample.

FA98951-4 SOCR-4.5-DUP

No hits reported in this sample.

Orlando, FL

Section 4

Sample Results
Papart of Analysis
Report of Analysis

Page 1 of 1

4

Report of Analysis

Client Sample ID: SOCR-0.05

Lab Sample ID: FA98951-1 Date Sampled: 09/13/22

Matrix: AQ - Water Date Received: 09/15/22

Percent Solids: n/a

Project: 1225537

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	09/21/22	09/21/22 јс	EPA 245.1 ¹	EPA 245.1 ²

Report of Analysis

Client Sample ID: SOCR-0.05-DUP Lab Sample ID: FA98951-2 **Date Sampled:** 09/13/22 Matrix: AQ - Water

Date Received: 09/15/22 Percent Solids: n/a

Project: 1225537

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	09/21/22	09/21/22 јс	EPA 245.1 ¹	EPA 245.1 ²

Page 1 of 1

Report of Analysis

Client Sample ID: SOCR-4.5 Lab Sample ID: FA98951-3 **Date Sampled:** 09/13/22 Matrix: AQ - Water **Date Received:** 09/15/22 Percent Solids: n/a

Project: 1225537

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	09/21/22	09/21/22 јс	EPA 245.1 ¹	EPA 245.1 ²

Page 1 of 1

4

Report of Analysis

Client Sample ID: SOCR-4.5-DUP
Lab Sample ID: FA98951-4
Matrix: AQ - Water

Date Sampled: 09/13/22 **Date Received:** 09/15/22 **Percent Solids:** n/a

Project: 1225537

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	09/21/22	09/21/22 јс	EPA 245.1 ¹	EPA 245.1 ²

Orlando, FL

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

CI

SGS North America Inc. CHAIN OF CUSTODY RECORD

L**ocations Nationwid**€ Alaska Flor

Texas

laska Florida ew Jersey Colorac

Colorado North Carolina

Virginia Louisiana www.us.sgs.com

CLIENT:	SGS North Ame	erica Inc Alas	ka Division		SGS	SGS Reference: SGS Orlando, FL						Page 1 of 1			
CONTACT:	Julie Shumway	PHONE NO:	(907) 56	2-2343	Addi	tional	Comm	ents	: All	soils	repo	rt ou	t in dry weigl	nt unless	Tage For F
PROJECT NAME:	1225537	PWSID#:			# c	Preserv- ative Used:	rino3								
REPORTS TO	: Julie Shumway	E-MAIL: Env.Alaska.	Julie.Shumwa RefLabTeam@		4	TYPE C = COMP	Total								
	SGS - Alaska a.accounting@sgs.com	QUOTE#: P.O.#:	1225	537	A I N	G = GRAB MI = Multi	245.1, To								
RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HHMM	MATRIX/ MATRIX CODE	E R S	Incre- mental Soils	Mercury				MS	MSD	SGS lab #		Location ID
-1	SOCR-0.05	09/13/2022	11:06:00	Water	1		X						1225537001		
L	SOCR-0.05-DUP	09/13/2022	11:06:00	Water	1		Х						1225537002		
3	SOCR-4.5	09/13/2022	10:30:00	Water	1		Х						1225537003		
4	SOCR-4.5-DUP	09/13/2022	10:30:00	Water	1		Х						1225537004		
Relinquished By: (1) Date Time Received I 9/14/21 0937				•			DOD Project? Report to DL (J Flags)? If J- Report as DL/LOD/LOQ.			ags)?	NO NO	Data Delive	rable Requirements:		
Relinquished	Ву: (2)	Date 9/15/1	Time /	Received	ived By				Cooler ID: Requested Turnaround Time and					nd-or Spec	
Relinquished I	By: (3)	Date	Time	Received	Ву:				Temp	Blank	°C:	2.0		Chain of C	Custody Seal: (Circle)
Relinquished By: (4) Date Time Received f			For La	or Ambient [PINTACT	BROKEN ABSENT				

[X 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 [5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557 http://www.sgs.com/terms and conditions.htm

AL ASSESSMENT

ABL. VERIFICATION

F088_COC_REF_LAB_20190411

FA98951: Chain of Custody

Page 1 of 2

5.1

G

SGS Sample Receipt Summary

Job Number: FA98951	Client:	SGS ALASKA	P	Project: 1225537					
Date / Time Received: 9/15/2022	9:30:00 AN	1	Delivery Method:	FX A	irbill #'s:				
Therm ID: IR 1;			Therm CF: 0.6;		# of Cooler	rs: 1			
Cooler Temps (Raw Measured	I) °C: Coole	er 1: (2.0)	;						
Cooler Temps (Corrected) °C: Coole	er 1: (2.6)	ı;						
Cooler Information	Y or	N_	1	Sample Information		Υ	or N	N/A	
Custody Seals Present	✓			Sample labels present on	bottles	V		1	
2. Custody Seals Intact	\checkmark			Samples preserved proper		V			
Temp criteria achieved	✓			Sufficient volume/containe	rs recvd for analysis:	<u>_</u>			
4. Cooler temp verification	IR Gun			4. Condition of sample		Intac	<u>t</u>		
5. Cooler media	Ice (Bag)			5. Sample recvd within HT		✓]	
				6. Dates/Times/IDs on COC	match Sample Label	✓]	
Trip Blank Information	Y or	<u>N</u> _I	N/A_	7. VOCs have headspace					
1. Trip Blank present / cooler			✓	8. Bottles received for unspe	cified tests		✓]	
2. Trip Blank listed on COC			✓	Compositing instructions of	lear			✓	
	W or	s	N/A	10. Voa Soil Kits/Jars receive	ed past 48hrs?			✓	
3. Type Of TB Received			<u>√</u>	11. % Solids Jar received?				✓	
3. Type Of 1B Neceived			V	12. Residual Chlorine Preser	nt?			✓	
Misc. Information									
Number of Encores: 25-Gram		5-Gram	Num	nber of 5035 Field Kits:	Number of La	ab Filter	ed Metals	s:	
				H 10-12 219813A	Other: (Spec				
Residual Chlorine Test Strip Lot #									
Comments									
SM001 Rev. Date 05/24/17 Technician:	NATHANS		Date: 9/15/2022	9:30:00 AM Re	eviewer:		Date	e:	

FA98951: Chain of Custody Page 2 of 2

Orlando, FL

Section 6

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA98951 Account: SGSAKA - SGS North America, Inc Project: 1225537

QC Batch ID: MP41232 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 09/21/22 09/21/22

Metal	RL	IDL	MDL	MB raw	final	MB raw	final
Mercury	0.50	.03	.03	0.025	<0.50	0.028	<0.50

Associated samples MP41232: FA98951-1, FA98951-2, FA98951-3, FA98951-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA98951 Account: SGSAKA - SGS North America, Inc Project: 1225537

QC Batch ID: MP41232 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

09/21/22 09/21/22 Prep Date:

Metal	FA98857-		RPD	QC Limits	FA98857-1 Original		Spikelot HGFLWS1		QC Limits
Mercury	0.0	0.037	200.0(a)	0-10	0.0	2.9	3	96.7	70-130

Associated samples MP41232: FA98951-1, FA98951-2, FA98951-3, FA98951-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

- (N) Matrix Spike Rec. outside of QC limits $\,$
- (anr) Analyte not requested
- (a) RPD acceptable due to low duplicate and sample concentrations.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA98951 Account: SGSAKA - SGS North America, Inc Project: 1225537

QC Batch ID: MP41232 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

09/21/22

Metal	FA98857- Original		Spikelot HGFLWS1		MSD RPD
Mercury	0.0	2.8	3	93.3	3.5

Associated samples MP41232: FA98951-1, FA98951-2, FA98951-3, FA98951-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

Login Number: FA98951 Account: SGSAKA - SGS North America, Inc Project: 1225537

QC Batch ID: MP41232 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 09/21/22

Associated samples MP41232: FA98951-1, FA98951-2, FA98951-3, FA98951-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA98951
Account: SGSAKA - SGS North America, Inc
Project: 1225537

QC Batch ID: MP41232 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 09/21/22

Associated samples MP41232: FA98951-1, FA98951-2, FA98951-3, FA98951-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Laboratory Report of Analysis

To: ADEC-Air & Water Quality

610 University Drive Fairbanks, AK 99709 (907)451-2141

Report Number: 1225639

Client Project: NTP 22 464 WHADA

Dear Morgan Brown,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson
Project Manager
Justin.Nelson@sgs.com

Date

Print Date: 10/06/2022 1:17:38PM Results via Engage

Case Narrative

SGS Client: ADEC-Air & Water Quality SGS Project: 1225639 Project Name/Site: NTP 22 464 WHADA Project Contact: Morgan Brown

Refer to sample receipt form for information on sample condition.

1225708002MS (1688137) MS

4500NO3-F - Nitrate/Nitrite - MS recovery for total nitrate/nitrite is outside of QC criteria. Refer to LCS for accuracy requirements.

1225708002MSD (1688138) MSD

4500NO3-F - Nitrate/Nitrite - MSD recovery for total nitrate/nitrite is outside of QC criteria. Refer to LCS for accuracy requirements.

Mercury 245.1 Total was analyzed by SGS of Orlando, FL.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 10/06/2022 1:17:39PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check
LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 10/06/2022 1:17:41PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
CAM 6	1225639001	09/15/2022	09/15/2022	Water (Surface, Eff., Ground)
CHE 3	1225639002	09/15/2022	09/15/2022	Water (Surface, Eff., Ground)
ANCHBACT 20-01	1225639003	09/15/2022	09/15/2022	Water (Surface, Eff., Ground)
CHE 33	1225639004	09/15/2022	09/15/2022	Water (Surface, Eff., Ground)

MethodMethod DescriptionSM 5310BDissolved Organic CarbonSM21 2340BHardness as CaCO3 by ICP-MSEP200.8Metals in Drinking Water by ICP-MS DISSOEP200.8Metals in Water by 200.8 ICP-MSSM21 4500NO3-FNitrate/Nitrite Flow injection Pres.

SM23 4500-N D TKN by Phenate (W)
SM21 4500P-B,E Total Phosphorus (W)

Print Date: 10/06/2022 1:17:43PM

Client Sample ID: CAM 6				
Lab Sample ID: 1225639001	Parameter	Result	<u>Units</u>	
Dissolved Metals by ICP/MS	Barium	13.0	ug/L	
,	Calcium	19300	ug/L	
	Magnesium	3310	ug/L	
	Manganese	11.4	ug/L	
	Silicon	3820	ug/L	
	Sodium	3270	ug/L	
	Zinc	46.3	ug/L	
Metals by ICP/MS	Calcium	19300	ug/L	
·	Hardness as CaCO3	61.9	mg/L	
	Magnesium	3310	ug/L	
Waters Department	TOC Average, Dissolved	2.08	mg/L	
	Total Nitrate/Nitrite-N	0.329	mg/L	
Client Sample ID: CHE 3				
Lab Sample ID: 1225639002	Parameter	Result	Units	
Dissolved Metals by ICP/MS	Barium	21.8	ug/L	
Discorred metals by for Ame	Calcium	32200	ug/L	
	Magnesium	8340	ug/L	
	Manganese	6.70	ug/L	
	Nickel	2.82	ug/L	
	Potassium	1270	ug/L	
	Silicon	6520	ug/L	
	Sodium	13800	ug/L	
	Zinc	29.4	ug/L	
Metals by ICP/MS	Calcium	32200	ug/L	
•				

Hardness as CaCO3

Total Nitrate/Nitrite-N

TOC Average, Dissolved

Magnesium

<u>Parameter</u>

Barium

Detectable Results Summary

Client Sample ID: ANCHBACT 20-01

Lab Sample ID: 1225639003

Dissolved Metals by ICP/MS

Calcium 15900 ug/L Magnesium 2480 ug/L Manganese 1.80 ug/L Silicon 3470 ug/L Sodium 1420 ug/L Zinc 32.2 ug/L Calcium 15900 ug/L Hardness as CaCO3 49.9 mg/L 2480 ug/L

115

8340

4.32

0.950

Result

10.2

1.35

0.200

mg/L

ug/L

mg/L

mg/L

<u>Units</u>

ug/L

mg/L

mg/L

Metals by ICP/MS

Waters Department

Waters Department

Magnesium
TOC Average, Dissolved
Total Nitrate/Nitrite-N

Print Date: 10/06/2022 1:17:44PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: CHE 33			
Lab Sample ID: 1225639004	<u>Parameter</u>	Result	<u>Units</u>
Dissolved Metals by ICP/MS	Aluminum	29.6	ug/L
	Barium	7.13	ug/L
	Calcium	18500	ug/L
	Magnesium	3960	ug/L
	Manganese	3.30	ug/L
	Potassium	593	ug/L
	Silicon	6390	ug/L
	Sodium	2110	ug/L
	Zinc	63.4	ug/L
Metals by ICP/MS	Calcium	18500	ug/L
	Hardness as CaCO3	62.6	mg/L
	Magnesium	3960	ug/L
Waters Department	TOC Average, Dissolved	5.03	mg/L
	Total Nitrate/Nitrite-N	0.360	mg/L

Print Date: 10/06/2022 1:17:44PM

Results of CAM 6

Client Sample ID: CAM 6

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639001 Lab Project ID: 1225639 Collection Date: 09/15/22 11:55 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aluminum	20.0 U	20.0	6.20	ug/L	1		09/23/22 17:59
Antimony	1.00 U	1.00	0.310	ug/L	1		09/23/22 17:59
Arsenic	5.00 U	5.00	1.50	ug/L	1		09/23/22 17:59
Barium	13.0	3.00	0.940	ug/L	1		09/30/22 00:44
Beryllium	0.400 U	0.400	0.130	ug/L	1		09/23/22 17:59
Cadmium	0.500 U	0.500	0.150	ug/L	1		09/23/22 17:59
Calcium	19300	500	150	ug/L	1		09/23/22 17:59
Chromium	5.00 U	5.00	2.50	ug/L	1		09/23/22 17:59
Cobalt	4.00 U	4.00	1.20	ug/L	1		09/23/22 17:59
Copper	3.00 U	3.00	1.00	ug/L	1		09/23/22 17:59
Iron	250 U	250	78.0	ug/L	1		09/23/22 17:59
Lead	2.00 U	2.00	0.500	ug/L	1		09/23/22 17:59
Magnesium	3310	50.0	15.0	ug/L	1		09/23/22 17:59
Manganese	11.4	1.00	0.350	ug/L	1		09/23/22 17:59
Molybdenum	2.00 U	2.00	0.620	ug/L	1		09/23/22 17:59
Nickel	2.00 U	2.00	0.620	ug/L	1		09/23/22 17:59
Phosphorus	200 U	200	62.0	ug/L	1		09/23/22 17:59
Potassium	500 U	500	150	ug/L	1		09/23/22 17:59
Selenium	5.00 U	5.00	1.50	ug/L	1		09/23/22 17:59
Silicon	3820	1000	310	ug/L	1		09/23/22 17:59
Silver	1.00 U	1.00	0.310	ug/L	1		09/23/22 17:59
Sodium	3270	500	150	ug/L	1		09/23/22 17:59
Thallium	1.00 U	1.00	0.310	ug/L	1		09/23/22 17:59
Tin	1.00 U	1.00	0.310	ug/L	1		09/23/22 17:59
Titanium	6.25 U	6.25	3.13	ug/L	1		09/23/22 17:59
Vanadium	20.0 U	20.0	6.20	ug/L	1		09/23/22 17:59
Zinc	46.3	10.0	3.10	ug/L	1		09/23/22 17:59

Client Sample ID: CAM 6

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639001 Lab Project ID: 1225639 Collection Date: 09/15/22 11:55 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

Batch Information

Analytical Batch: MMS11700 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/30/22 00:44 Container ID: 1225639001-C

Analytical Batch: MMS11691 Analytical Method: EP200.8

Analyst: DSD

Analytical Date/Time: 09/23/22 17:59 Container ID: 1225639001-C Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: CAM 6

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639001 Lab Project ID: 1225639 Collection Date: 09/15/22 11:55 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	19300	500	150	ug/L	1		09/23/22 17:59
Magnesium	3310	50.0	15.0	ug/L	1		09/23/22 17:59

Batch Information

Analytical Batch: MMS11700 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/30/22 00:44 Container ID: 1225639001-C

Analytical Batch: MMS11691 Analytical Method: EP200.8

Analyst: DSD

Analytical Date/Time: 09/23/22 17:59 Container ID: 1225639001-C Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	61.9	5.00	5.00	mg/L	1		09/23/22 17:59

Batch Information

Analytical Batch: MMS11691 Analytical Method: SM21 2340B

Analyst: DSD

Analytical Date/Time: 09/23/22 17:59 Container ID: 1225639001-D Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: CAM 6

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639001 Lab Project ID: 1225639 Collection Date: 09/15/22 11:55 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

Allowable Parameter Result Qual LOQ/CL DL Units <u>DF</u> Date Analyzed **Limits** TOC Average, Dissolved 2.08 1.00 0.400 mg/L 1 09/27/22 01:28

Batch Information

Analytical Batch: WTC3239 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 09/27/22 01:28 Container ID: 1225639001-F

<u>Allowable</u> <u>Parameter</u> <u>Units</u> Result Qual LOQ/CL DL <u>DF</u> Date Analyzed Limits Total Nitrate/Nitrite-N 0.329 0.200 0.0500 2 09/27/22 15:43 mg/L

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 09/27/22 15:43 Container ID: 1225639001-G

Allowable LOQ/CL Date Analyzed Parameter Result Qual DL **Units** <u>DF</u> Limits Total Phosphorus 0.0400 U 0.0400 0.0120 1 09/28/22 17:30 mg/L

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 09/28/22 17:30 Container ID: 1225639001-G

Prep Batch: WXX14475 Prep Method: SM21 4500P-B,E Prep Date/Time: 09/28/22 08:38

Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Allowable LOQ/CL **Parameter** Result Qual DL **Units** <u>DF</u> **Limits Date Analyzed** Total Kjeldahl Nitrogen 1.00 U 1.00 0.310 mg/L 09/29/22 15:50 1

Client Sample ID: CAM 6

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639001 Lab Project ID: 1225639 Collection Date: 09/15/22 11:55 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

Batch Information

Analytical Batch: WDA5338 Analytical Method: SM23 4500-N D

Analyst: MEB

Analytical Date/Time: 09/29/22 15:50 Container ID: 1225639001-G Prep Batch: WXX14477
Prep Method: METHOD
Prep Date/Time: 09/28/22 11:33
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

Client Sample ID: CHE 3

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639002 Lab Project ID: 1225639 Collection Date: 09/15/22 11:00 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aluminum	20.0 U	20.0	6.20	ug/L	1		09/23/22 18:08
Antimony	1.00 U	1.00	0.310	ug/L	1		09/23/22 18:08
Arsenic	5.00 U	5.00	1.50	ug/L	1		09/23/22 18:08
Barium	21.8	3.00	0.940	ug/L	1		09/30/22 00:47
Beryllium	0.400 U	0.400	0.130	ug/L	1		09/23/22 18:08
Cadmium	0.500 U	0.500	0.150	ug/L	1		09/23/22 18:08
Calcium	32200	500	150	ug/L	1		09/23/22 18:08
Chromium	5.00 U	5.00	2.50	ug/L	1		09/23/22 18:08
Cobalt	4.00 U	4.00	1.20	ug/L	1		09/23/22 18:08
Copper	3.00 U	3.00	1.00	ug/L	1		09/23/22 18:08
Iron	250 U	250	78.0	ug/L	1		09/23/22 18:08
Lead	2.00 U	2.00	0.500	ug/L	1		09/23/22 18:08
Magnesium	8340	50.0	15.0	ug/L	1		09/23/22 18:08
Manganese	6.70	1.00	0.350	ug/L	1		09/23/22 18:08
Molybdenum	2.00 U	2.00	0.620	ug/L	1		09/23/22 18:08
Nickel	2.82	2.00	0.620	ug/L	1		09/23/22 18:08
Phosphorus	200 U	200	62.0	ug/L	1		09/23/22 18:08
Potassium	1270	500	150	ug/L	1		09/23/22 18:08
Selenium	5.00 U	5.00	1.50	ug/L	1		09/23/22 18:08
Silicon	6520	1000	310	ug/L	1		09/23/22 18:08
Silver	1.00 U	1.00	0.310	ug/L	1		09/23/22 18:08
Sodium	13800	500	150	ug/L	1		09/23/22 18:08
Thallium	1.00 U	1.00	0.310	ug/L	1		09/23/22 18:08
Tin	1.00 U	1.00	0.310	ug/L	1		09/23/22 18:08
Titanium	6.25 U	6.25	3.13	ug/L	1		09/23/22 18:08
Vanadium	20.0 U	20.0	6.20	ug/L	1		09/23/22 18:08
Zinc	29.4	10.0	3.10	ug/L	1		09/23/22 18:08

Client Sample ID: CHE 3

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639002 Lab Project ID: 1225639 Collection Date: 09/15/22 11:00 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

Batch Information

Analytical Batch: MMS11700 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/30/22 00:47 Container ID: 1225639002-C

Analytical Batch: MMS11691 Analytical Method: EP200.8

Analyst: DSD

Analytical Date/Time: 09/23/22 18:08 Container ID: 1225639002-C Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: CHE 3

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639002 Lab Project ID: 1225639 Collection Date: 09/15/22 11:00 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	32200	500	150	ug/L	1		09/23/22 18:08
Magnesium	8340	50.0	15.0	ug/L	1		09/23/22 18:08

Batch Information

Analytical Batch: MMS11700 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/30/22 00:47 Container ID: 1225639002-C

Analytical Batch: MMS11691 Analytical Method: EP200.8

Analyst: DSD

Analytical Date/Time: 09/23/22 18:08 Container ID: 1225639002-C Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	115	5.00	5.00	mg/L	1		09/23/22 18:08

Batch Information

Analytical Batch: MMS11691 Analytical Method: SM21 2340B

Analyst: DSD

Analytical Date/Time: 09/23/22 18:08 Container ID: 1225639002-D Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: CHE 3

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639002 Lab Project ID: 1225639 Collection Date: 09/15/22 11:00 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

Allowable Parameter Result Qual LOQ/CL DL Units <u>DF</u> Date Analyzed **Limits** TOC Average, Dissolved 4.32 1.00 0.400 mg/L 1 09/27/22 01:41

Batch Information

Analytical Batch: WTC3239 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 09/27/22 01:41 Container ID: 1225639002-F

<u>Allowable</u> <u>Parameter</u> <u>Units</u> Result Qual LOQ/CL DL <u>DF</u> Date Analyzed Limits Total Nitrate/Nitrite-N 0.950 0.200 0.0500 2 09/27/22 14:47 mg/L

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 09/27/22 14:47 Container ID: 1225639002-G

Allowable LOQ/CL Date Analyzed Parameter Result Qual DL **Units** <u>DF</u> Limits Total Phosphorus 0.0400 U 0.0400 0.0120 1 09/28/22 17:31 mg/L

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 09/28/22 17:31 Container ID: 1225639002-G

Prep Batch: WXX14475 Prep Method: SM21 4500P-B,E

Prep Method: SM21 4500P-B,E Prep Date/Time: 09/28/22 08:38 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

ParameterResult QualLOQ/CLDLUnitsDFLimitsDate AnalyzedTotal Kjeldahl Nitrogen1.00 U1.000.310mg/L109/29/22 15:56

Print Date: 10/06/2022 1:17:45PM

Allowable

Client Sample ID: CHE 3

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639002 Lab Project ID: 1225639 Collection Date: 09/15/22 11:00 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

Batch Information

Analytical Batch: WDA5338 Analytical Method: SM23 4500-N D

Analyst: MEB

Analytical Date/Time: 09/29/22 15:56 Container ID: 1225639002-G Prep Batch: WXX14477
Prep Method: METHOD
Prep Date/Time: 09/28/22 11:33
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

Client Sample ID: ANCHBACT 20-01 Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639003 Lab Project ID: 1225639 Collection Date: 09/15/22 10:15 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aluminum	20.0 U	20.0	6.20	ug/L	1		09/23/22 18:11
Antimony	1.00 U	1.00	0.310	ug/L	1		09/23/22 18:11
Arsenic	5.00 U	5.00	1.50	ug/L	1		09/23/22 18:11
Barium	10.2	3.00	0.940	ug/L	1		09/30/22 00:55
Beryllium	0.400 U	0.400	0.130	ug/L	1		09/23/22 18:11
Cadmium	0.500 U	0.500	0.150	ug/L	1		09/23/22 18:11
Calcium	15900	500	150	ug/L	1		09/23/22 18:11
Chromium	5.00 U	5.00	2.50	ug/L	1		09/23/22 18:11
Cobalt	4.00 U	4.00	1.20	ug/L	1		09/23/22 18:11
Copper	3.00 U	3.00	1.00	ug/L	1		09/23/22 18:11
Iron	250 U	250	78.0	ug/L	1		09/23/22 18:11
Lead	2.00 U	2.00	0.500	ug/L	1		09/23/22 18:11
Magnesium	2480	50.0	15.0	ug/L	1		09/23/22 18:11
Manganese	1.80	1.00	0.350	ug/L	1		09/23/22 18:11
Molybdenum	2.00 U	2.00	0.620	ug/L	1		09/23/22 18:11
Nickel	2.00 U	2.00	0.620	ug/L	1		09/23/22 18:11
Phosphorus	200 U	200	62.0	ug/L	1		09/23/22 18:11
Potassium	500 U	500	150	ug/L	1		09/23/22 18:11
Selenium	5.00 U	5.00	1.50	ug/L	1		09/23/22 18:11
Silicon	3470	1000	310	ug/L	1		09/23/22 18:11
Silver	1.00 U	1.00	0.310	ug/L	1		09/23/22 18:11
Sodium	1420	500	150	ug/L	1		09/23/22 18:11
Thallium	1.00 U	1.00	0.310	ug/L	1		09/23/22 18:11
Tin	1.00 U	1.00	0.310	ug/L	1		09/23/22 18:11
Titanium	6.25 U	6.25	3.13	ug/L	1		09/23/22 18:11
Vanadium	20.0 U	20.0	6.20	ug/L	1		09/23/22 18:11
Zinc	32.2	10.0	3.10	ug/L	1		09/23/22 18:11

Client Sample ID: ANCHBACT 20-01 Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639003 Lab Project ID: 1225639 Collection Date: 09/15/22 10:15 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

Batch Information

Analytical Batch: MMS11700 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/30/22 00:55 Container ID: 1225639003-C

Analytical Batch: MMS11691 Analytical Method: EP200.8

Analyst: DSD

Analytical Date/Time: 09/23/22 18:11 Container ID: 1225639003-C Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: **ANCHBACT 20-01**Client Project ID: **NTP 22 464 WHADA**

Lab Sample ID: 1225639003 Lab Project ID: 1225639 Collection Date: 09/15/22 10:15 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	15900	500	150	ug/L	1		09/23/22 18:11
Magnesium	2480	50.0	15.0	ug/L	1		09/23/22 18:11

Batch Information

Analytical Batch: MMS11700 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/30/22 00:55 Container ID: 1225639003-C

Analytical Batch: MMS11691 Analytical Method: EP200.8

Analyst: DSD

Analytical Date/Time: 09/23/22 18:11 Container ID: 1225639003-C Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	49.9	5.00	5.00	mg/L	1		09/23/22 18:11

Batch Information

Analytical Batch: MMS11691 Analytical Method: SM21 2340B

Analyst: DSD

Analytical Date/Time: 09/23/22 18:11 Container ID: 1225639003-D Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: **ANCHBACT 20-01**Client Project ID: **NTP 22 464 WHADA**

Lab Sample ID: 1225639003 Lab Project ID: 1225639 Collection Date: 09/15/22 10:15 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

۸ II ما ما ما ما

Solids (%): Location:

Results by Waters Department

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
TOC Average, Dissolved	1.35	1.00	0.400	mg/L	1		09/27/22 01:55

Batch Information

Analytical Batch: WTC3239 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 09/27/22 01:55 Container ID: 1225639003-F

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Nitrate/Nitrite-N	0.200	0.200	0.0500	mg/L	2		09/27/22 14:49

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 09/27/22 14:49 Container ID: 1225639003-G

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Phosphorus	0.0400 U	0.0400	0.0120	mg/L	1		09/28/22 17:32

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 09/28/22 17:32 Container ID: 1225639003-G Prep Batch: WXX14475
Prep Method: SM21 4500P-B,E
Prep Date/Time: 09/28/22 08:38
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Kjeldahl Nitrogen	1.00 U	1.00	0.310	mg/L	1		09/29/22 15:58

Client Sample ID: ANCHBACT 20-01 Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639003 Lab Project ID: 1225639 Collection Date: 09/15/22 10:15 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

Batch Information

Analytical Batch: WDA5338 Analytical Method: SM23 4500-N D

Analyst: MEB

Analytical Date/Time: 09/29/22 15:58 Container ID: 1225639003-G Prep Batch: WXX14477
Prep Method: METHOD
Prep Date/Time: 09/28/22 11:33
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

Client Sample ID: CHE 33

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639004 Lab Project ID: 1225639 Collection Date: 09/15/22 09:25 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aluminum	29.6	20.0	6.20	ug/L	1		09/23/22 18:14
Antimony	1.00 U	1.00	0.310	ug/L	1		09/23/22 18:14
Arsenic	5.00 U	5.00	1.50	ug/L	1		09/23/22 18:14
Barium	7.13	3.00	0.940	ug/L	1		09/30/22 00:58
Beryllium	0.400 U	0.400	0.130	ug/L	1		09/23/22 18:14
Cadmium	0.500 U	0.500	0.150	ug/L	1		09/23/22 18:14
Calcium	18500	500	150	ug/L	1		09/23/22 18:14
Chromium	5.00 U	5.00	2.50	ug/L	1		09/23/22 18:14
Cobalt	4.00 U	4.00	1.20	ug/L	1		09/23/22 18:14
Copper	3.00 U	3.00	1.00	ug/L	1		09/23/22 18:14
Iron	250 U	250	78.0	ug/L	1		09/23/22 18:14
Lead	2.00 U	2.00	0.500	ug/L	1		09/23/22 18:14
Magnesium	3960	50.0	15.0	ug/L	1		09/23/22 18:14
Manganese	3.30	1.00	0.350	ug/L	1		09/23/22 18:14
Molybdenum	2.00 U	2.00	0.620	ug/L	1		09/23/22 18:14
Nickel	2.00 U	2.00	0.620	ug/L	1		09/23/22 18:14
Phosphorus	200 U	200	62.0	ug/L	1		09/23/22 18:14
Potassium	593	500	150	ug/L	1		09/23/22 18:14
Selenium	5.00 U	5.00	1.50	ug/L	1		09/23/22 18:14
Silicon	6390	1000	310	ug/L	1		09/23/22 18:14
Silver	1.00 U	1.00	0.310	ug/L	1		09/23/22 18:14
Sodium	2110	500	150	ug/L	1		09/23/22 18:14
Thallium	1.00 U	1.00	0.310	ug/L	1		09/23/22 18:14
Tin	1.00 U	1.00	0.310	ug/L	1		09/23/22 18:14
Titanium	6.25 U	6.25	3.13	ug/L	1		09/23/22 18:14
Vanadium	20.0 U	20.0	6.20	ug/L	1		09/23/22 18:14
Zinc	63.4	10.0	3.10	ug/L	1		09/23/22 18:14

Client Sample ID: CHE 33

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639004 Lab Project ID: 1225639 Collection Date: 09/15/22 09:25 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

Batch Information

Analytical Batch: MMS11700 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/30/22 00:58 Container ID: 1225639004-C

Analytical Batch: MMS11691 Analytical Method: EP200.8

Analyst: DSD

Analytical Date/Time: 09/23/22 18:14 Container ID: 1225639004-C Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: CHE 33

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639004 Lab Project ID: 1225639 Collection Date: 09/15/22 09:25 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	18500	500	150	ug/L	1		09/23/22 18:14
Magnesium	3960	50.0	15.0	ug/L	1		09/23/22 18:14

Batch Information

Analytical Batch: MMS11700 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 09/30/22 00:58 Container ID: 1225639004-C

Analytical Batch: MMS11691 Analytical Method: EP200.8

Analyst: DSD

Analytical Date/Time: 09/23/22 18:14 Container ID: 1225639004-C Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	62.6	5.00	5.00	mg/L	1		09/23/22 18:14

Batch Information

Analytical Batch: MMS11691 Analytical Method: SM21 2340B

Analyst: DSD

Analytical Date/Time: 09/23/22 18:14 Container ID: 1225639004-D Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 09/20/22 12:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: CHE 33

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639004 Lab Project ID: 1225639 Collection Date: 09/15/22 09:25 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

Allowable Result Qual LOQ/CL DL Units <u>DF</u> Date Analyzed Parameter **Limits** TOC Average, Dissolved 5.03 1.00 0.400 mg/L 1 09/27/22 02:08

Batch Information

Analytical Batch: WTC3239 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 09/27/22 02:08 Container ID: 1225639004-F

<u>Allowable</u> <u>Parameter</u> <u>Units</u> Result Qual LOQ/CL DL <u>DF</u> Date Analyzed Limits Total Nitrate/Nitrite-N 0.360 0.200 0.0500 2 09/27/22 14:51 mg/L

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 09/27/22 14:51 Container ID: 1225639004-G

Allowable LOQ/CL Date Analyzed Parameter Result Qual DL **Units** <u>DF</u> Limits Total Phosphorus 0.0400 U 0.0400 0.0120 1 09/28/22 17:32 mg/L

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 09/28/22 17:32 Container ID: 1225639004-G

Prep Batch: WXX14475

Prep Method: SM21 4500P-B,E Prep Date/Time: 09/28/22 08:38 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Allowable LOQ/CL **Parameter** Result Qual DL **Units** <u>DF</u> **Limits Date Analyzed** Total Kjeldahl Nitrogen 1.00 U 1.00 0.310 mg/L 09/29/22 15:59 1

Client Sample ID: CHE 33

Client Project ID: NTP 22 464 WHADA

Lab Sample ID: 1225639004 Lab Project ID: 1225639 Collection Date: 09/15/22 09:25 Received Date: 09/15/22 12:30 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

Batch Information

Analytical Batch: WDA5338 Analytical Method: SM23 4500-N D

Analyst: MEB

Analytical Date/Time: 09/29/22 15:59 Container ID: 1225639004-G Prep Batch: WXX14477
Prep Method: METHOD
Prep Date/Time: 09/28/22 11:33
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

Method Blank

Blank ID: MB for HBN 1843980 [MXX/35481]

Blank Lab ID: 1686732

QC for Samples:

1225639001, 1225639002, 1225639003, 1225639004

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

-				
<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Aluminum	10.0U	20.0	6.20	ug/L
Antimony	0.500U	1.00	0.310	ug/L
Arsenic	2.50U	5.00	1.50	ug/L
Barium	1.50U	3.00	0.940	ug/L
Beryllium	0.200U	0.400	0.130	ug/L
Cadmium	0.250U	0.500	0.150	ug/L
Calcium	250U	500	150	ug/L
Chromium	2.50U	5.00	2.50	ug/L
Cobalt	2.00U	4.00	1.20	ug/L
Copper	1.50U	3.00	1.00	ug/L
Iron	125U	250	78.0	ug/L
Lead	1.00U	2.00	0.500	ug/L
Magnesium	25.0U	50.0	15.0	ug/L
Manganese	0.500U	1.00	0.350	ug/L
Molybdenum	1.00U	2.00	0.620	ug/L
Nickel	1.00U	2.00	0.620	ug/L
Phosphorus	100U	200	62.0	ug/L
Potassium	250U	500	150	ug/L
Selenium	2.50U	5.00	1.50	ug/L
Silicon	500U	1000	310	ug/L
Silver	0.500U	1.00	0.310	ug/L
Sodium	250U	500	150	ug/L
Thallium	0.500U	1.00	0.310	ug/L
Tin	0.500U	1.00	0.310	ug/L
Titanium	12.5U	25.0	7.75	ug/L
Vanadium	10.0U	20.0	6.20	ug/L
Zinc	9.66J	10.0	3.10	ug/L

Method Blank

Blank ID: MB for HBN 1843980 [MXX/35481]

Blank Lab ID: 1686732

QC for Samples:

1225639001, 1225639002, 1225639003, 1225639004

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

<u>Parameter</u> <u>Results</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u>

Batch Information

Analytical Batch: MMS11691 Analytical Method: EP200.8

Instrument: Perkin Elmer Nexlon P5

Analyst: DSD

Analytical Date/Time: 9/23/2022 4:56:00PM

Analytical Batch: MMS11704 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 9/30/2022 3:19:36PM

Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 9/20/2022 12:42:51PM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35481 Prep Method: E200.2

Prep Date/Time: 9/20/2022 12:42:51PM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225639 [MXX35481]

Blank Spike Lab ID: 1686733 Date Analyzed: 09/23/2022 16:59

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225639001, 1225639002, 1225639003, 1225639004

Results by EP200.8

		Blank Spike	e (ug/L)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	CL
Aluminum	1000	990	99	(85-115)
Antimony	1000	982	98	(85-115)
Arsenic	1000	1060	106	(85-115)
Barium	1000	951	95	(85-115)
Beryllium	100	111	111	(85-115)
Cadmium	100	105	105	(85-115)
Calcium	10000	10400	104	(85-115)
Chromium	400	402	100	(85-115)
Cobalt	500	502	100	(85-115)
Copper	1000	1030	103	(85-115)
Iron	5000	5200	104	(85-115)
Lead	1000	1030	103	(85-115)
Magnesium	10000	10100	101	(85-115)
Manganese	500	500	100	(85-115)
Molybdenum	400	395	99	(85-115)
Nickel	1000	1010	101	(85-115)
Phosphorus	500	537	107	(85-115)
Potassium	10000	10300	103	(85-115)
Selenium	1000	1140	114	(85-115)
Silicon	10000	10700	107	(85-115)
Silver	100	102	102	(85-115)
Sodium	10000	10000	100	(85-115)
Thallium	10	10.1	101	(85-115)
Tin	100	96.2	96	(85-115)
Titanium	100	101	101	(85-115)
Vanadium	200	201	100	(85-115)
Zinc	1000	1100	110	(85-115)

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225639 [MXX35481]

Blank Spike Lab ID: 1686733 Date Analyzed: 09/23/2022 16:59

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225639001, 1225639002, 1225639003, 1225639004

Results by EP200.8

Blank Spike (ug/L)

<u>Parameter</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u>

Batch Information

Analytical Batch: MMS11691 Prep Batch: MXX35481
Analytical Method: EP200.8 Prep Method: E200.2

Instrument: Perkin Elmer NexIon P5 Prep Date/Time: 09/20/2022 12:42

Analyst: DSD Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Analytical Batch: MMS11704 Prep Batch: MXX35481
Analytical Method: EP200.8 Prep Method: E200.2

Instrument: P7 Agilent 7800 Prep Date/Time: 09/20/2022 12:42

Analyst: **HGS** Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Original Sample ID: 1686731 MS Sample ID: 1686736 MS

MSD Sample ID:

Analysis Date: 09/23/2022 17:11 Analysis Date: 09/23/2022 17:14

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225639001, 1225639002, 1225639003, 1225639004

Results by EP200.8

		Matrix Spike (ug/L)		Spike Duplicate (ug/L)				`		
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Aluminum	10.0U	1000	1030	103				70-130		
Antimony	0.500U	1000	1010	101				70-130		
Arsenic	2.50U	1000	1030	103				70-130		
Barium	1.50U	1000	964	96				70-130		
Beryllium	0.200U	100	100	100				70-130		
Cadmium	0.250U	100	99.5	100				70-130		
Calcium	52000	10000	63500	115				70-130		
Chromium	2.50U	400	396	99				70-130		
Cobalt	2.00U	500	514	103				70-130		
Copper	1.50U	1000	1030	103				70-130		
Iron	198J	5000	5380	104				70-130		
Lead	1.00U	1000	1010	101				70-130		
Magnesium	18400	10000	27200	88				70-130		
Manganese	0.500U	500	504	101				70-130		
Molybdenum	7.24	400	431	106				70-130		
Nickel	1.85J	1000	1020	102				70-130		
Phosphorus	100U	500	547	109				70-130		
Potassium	1830	10000	12200	104				70-130		
Selenium	2.50U	1000	1060	106				70-130		
Silicon	5890	10000	16500	106				70-130		
Silver	0.500U	100	104	104				70-130		
Sodium	44300	10000	53900	96				70-130		
Thallium	0.500U	10.0	9.83	98				70-130		
Tin	0.500U	100	98.9	99				70-130		
Titanium	12.5U	100	103	103				70-130		
Vanadium	10.0U	200	202	101				70-130		
Zinc	46.4	1000	1050	100				70-130		

Original Sample ID: 1686731 MS Sample ID: 1686736 MS

MSD Sample ID:

Analysis Date: 09/23/2022 17:11 Analysis Date: 09/23/2022 17:14

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225639001, 1225639002, 1225639003, 1225639004

Results by EP200.8

Matrix Spike (ug/L) Spike Duplicate (ug/L)

Parameter Sample Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL

Batch Information

Analytical Batch: MMS11691 Analytical Method: EP200.8 Instrument: Perkin Elmer NexIon P5

Analyst: DSD

Analytical Date/Time: 9/23/2022 5:14:00PM

Analytical Batch: MMS11704 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 9/30/2022 3:30:16PM

Prep Batch: MXX35481

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 9/20/2022 12:42:51PM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Prep Batch: MXX35481

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 9/20/2022 12:42:51PM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Method Blank

Blank ID: MB for HBN 1844315 (WFI/3006)

Blank Lab ID: 1688144

QC for Samples:

1225639001, 1225639002, 1225639003, 1225639004

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500NO3-F

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Nitrate-N	0.100U	0.200	0.0500	mg/L
Nitrite-N	0.100U	0.200	0.0500	mg/L
Total Nitrate/Nitrite-N	0.100U	0.200	0.0500	mg/L

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 9/27/2022 3:01:58PM

Method Blank

Blank ID: MB for HBN 1844315 (WFI/3006)

Blank Lab ID: 1688150

QC for Samples:

1225639002, 1225639003, 1225639004

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500NO3-F

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Nitrate-N	0.100U	0.200	0.0500	mg/L
Nitrite-N	0.100U	0.200	0.0500	mg/L
Total Nitrate/Nitrite-N	0.100U	0.200	0.0500	mg/L

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 9/27/2022 2:16:28PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225639 [WFI3006]

Blank Spike Lab ID: 1688146 Date Analyzed: 09/27/2022 15:00

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225639001, 1225639002, 1225639003, 1225639004

Results by SM21 4500NO3-F

Blank Spike (mg/L)					
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	
Nitrate-N	2.5	2.64	106	(70-130)	
Nitrite-N	2.5	2.59	103	(90-110)	
Total Nitrate/Nitrite-N	5	5.23	105	(90-110)	

Batch Information

Analytical Batch: WFI3006

Analytical Method: **SM21 4500NO3-F** Instrument: **Astoria segmented flow**

Analyst: EBH

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225639 [WFI3006]

Blank Spike Lab ID: 1688152 Date Analyzed: 09/27/2022 14:14

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225639002, 1225639003, 1225639004

Results by SM21 4500NO3-F

Blank Spike (mg/L)					
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>	
Nitrate-N	2.5	2.50	100	(70-130)	
Nitrite-N	2.5	2.57	103	(90-110)	
Total Nitrate/Nitrite-N	5	5.07	101	(90-110)	

Batch Information

Analytical Batch: WFI3006

Analytical Method: **SM21 4500NO3-F** Instrument: **Astoria segmented flow**

Analyst: EBH

Original Sample ID: 1225613001 MS Sample ID: 1688133 MS MSD Sample ID: 1688134 MSD

QC for Samples:

Analysis Date: 09/27/2022 13:34 Analysis Date: 09/27/2022 13:36 Analysis Date: 09/27/2022 13:37 Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500NO3-F

Matrix Spike (mg/L) Spike Duplicate (mg/L)

<u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL Total Nitrate/Nitrite-N 0.200U 5.00 5.17 103 5.00 5.41 108 90-110 4.50 (< 25)

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 9/27/2022 1:36:00PM

Original Sample ID: 1225625010 MS Sample ID: 1688135 MS MSD Sample ID: 1688136 MSD Analysis Date: 09/27/2022 14:19 Analysis Date: 09/27/2022 14:21 Analysis Date: 09/27/2022 14:23 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225639002, 1225639003, 1225639004

Results by SM21 4500NO3-F

 Matrix Spike (mg/L)
 Spike Duplicate (mg/L)

 Spike
 Result
 Rec (%)
 Rec (%)
 RPD (%)
 RPD CL

 Parameter
 Sample
 Spike
 Result
 Rec (%)
 Spike
 Result
 Rec (%)
 CL
 RPD (%)
 RPD CL

 Total Nitrate/Nitrite-N
 1.46
 5.00
 6.27
 96
 5.00
 6.57
 102
 90-110
 4.70
 (< 25)</td>

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 9/27/2022 2:21:00PM

 Original Sample ID: 1225708002
 Analysis Date: 09/27/2022 15:05

 MS Sample ID: 1688137 MS
 Analysis Date: 09/27/2022 15:07

 MSD Sample ID: 1688138 MSD
 Analysis Date: 09/27/2022 15:08

Matrix: Drinking Water

QC for Samples: 1225639001, 1225639002, 1225639003, 1225639004

Results by SM21 4500NO3-F

Matrix Spike (mg/L) Spike Duplicate (mg/L)

<u>Parameter</u> Rec (%) <u>Sample</u> Spike Result Rec (%) Spike Result RPD (%) RPD CL 0.236 Total Nitrate/Nitrite-N 5.00 5.95 114 * 5.00 5.96 114 90-110 0.14 (< 25)

Batch Information

Analytical Batch: WFI3006

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 9/27/2022 3:07:00PM

Method Blank

Blank ID: MB for HBN 1844468 [WXX/14475]

Blank Lab ID: 1688627

QC for Samples:

1225639001, 1225639002, 1225639003, 1225639004

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500P-B,E

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Phosphorus
 0.0200U
 0.0400
 0.0120
 mg/L

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E Instrument: Discrete Analyzer 2

Analyst: MEB

Analytical Date/Time: 9/28/2022 5:14:00PM

Prep Batch: WXX14475
Prep Method: SM21 4500P-B,E
Prep Date/Time: 9/28/2022 8:38:00AM

Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225639 [WXX14475]

Blank Spike Lab ID: 1688628

Date Analyzed: 09/28/2022 17:15

Spike Duplicate ID: LCSD for HBN 1225639

[WXX14475]

Spike Duplicate Lab ID: 1688629

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225639001, 1225639002, 1225639003, 1225639004

Results by SM21 4500P-B,E

Blank Spike (mg/L) Spike Duplicate (mg/L)

<u>Parameter</u> Rec (%) Spike Result Rec (%) Spike RPD (%) RPD CL Result **Total Phosphorus** 0.206 103 0.2 0.198 (< 25)0.2 99 (75-125)3.70

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E Instrument: Discrete Analyzer 2

Analyst: MEB

Prep Batch: WXX14475
Prep Method: SM21 4500P-B,E
Prep Date/Time: 09/28/2022 08:38

Spike Init Wt./Vol.: 0.2 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: 0.2 mg/L Extract Vol: 25 mL

Original Sample ID: 1225456001 MS Sample ID: 1688630 MS MSD Sample ID: 1688631 MSD Analysis Date: 09/28/2022 18:45 Analysis Date: 09/28/2022 18:45 Analysis Date: 09/28/2022 18:46 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225639001, 1225639002, 1225639003, 1225639004

Results by SM21 4500P-B,E

Matrix Spike (mg/L) Spike Duplicate (mg/L) <u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) RPD (%) RPD CL CL **Total Phosphorus** 1.39 4.00 5.57 105 4.00 5.57 105 75-125 0.07 (< 10)

Batch Information

Analytical Batch: WDA5336 Analytical Method: SM21 4500P-B,E Instrument: Discrete Analyzer 2

Analyst: MEB

Analytical Date/Time: 9/28/2022 6:45:00PM

Prep Batch: WXX14475

Prep Method: Total Phosphorus (W) Ext. Prep Date/Time: 9/28/2022 8:38:00AM

Prep Initial Wt./Vol.: 1.25mL Prep Extract Vol: 25.00mL

Method Blank

Blank ID: MB for HBN 1844499 [WXX/14477]

Blank Lab ID: 1688740

QC for Samples:

1225639001, 1225639002, 1225639003, 1225639004

Matrix: Water (Surface, Eff., Ground)

Results by SM23 4500-N D

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Kjeldahl Nitrogen
 0.500U
 1.00
 0.310
 mg/L

Batch Information

Analytical Batch: WDA5338 Analytical Method: SM23 4500-N D

Instrument: Discrete Analyzer 2

Analyst: MEB

Analytical Date/Time: 9/29/2022 3:38:53PM

Prep Batch: WXX14477 Prep Method: METHOD

Prep Date/Time: 9/28/2022 11:33:00AM

Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225639 [WXX14477]

Blank Spike Lab ID: 1688741

Date Analyzed: 09/29/2022 15:40

Spike Duplicate ID: LCSD for HBN 1225639

[WXX14477]

Spike Duplicate Lab ID: 1688742

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225639001, 1225639002, 1225639003, 1225639004

Results by SM23 4500-N D

Blank Spike (mg/L) Spike Duplicate (mg/L) <u>Parameter</u> Spike Result Rec (%) <u>Spike</u> Rec (%) RPD (%) RPD CL Result Total Kjeldahl Nitrogen 4.97 4 5.00 (< 25)4 124 125 (75-125)0.52

Batch Information

Analytical Batch: WDA5338
Analytical Method: SM23 4500-N D

Instrument: Discrete Analyzer 2

Analyst: MEB

Prep Batch: WXX14477
Prep Method: METHOD

Prep Date/Time: 09/28/2022 11:33

Spike Init Wt./Vol.: 4 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: 4 mg/L Extract Vol: 25 mL

Print Date: 10/06/2022 1:18:11PM

Matrix Spike Summary

Original Sample ID: 1225639001 MS Sample ID: 1688743 MS MSD Sample ID: 1688744 MSD Analysis Date: 09/29/2022 15:50 Analysis Date: 09/29/2022 15:54 Analysis Date: 09/29/2022 15:55 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225639001, 1225639002, 1225639003, 1225639004

Results by SM23 4500-N D

Matrix Spike (mg/L) Spike Duplicate (mg/L) <u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) RPD (%) RPD CL CL Total Kjeldahl Nitrogen 1.00U 4.00 3.33 83 4.00 3.34 83 75-125 0.27 (< 25)

Batch Information

Analytical Batch: WDA5338 Analytical Method: SM23 4500-N D Instrument: Discrete Analyzer 2

Analyst: MEB

Analytical Date/Time: 9/29/2022 3:54:28PM

Prep Batch: WXX14477

Prep Method: Distillation TKN by Phenate (W) Prep Date/Time: 9/28/2022 11:33:00AM

Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 10/06/2022 1:18:12PM

SGS NORTH AMERICA INC. CHAIN OF CUSTODY RECORD

Brofile #38538018BR

INSTRUCTIONS: SECTIONS 1-5 MUST BE FILLED OUT. CLIENT: **ADEC** OMISSIONS MAY DELAY THE ONSET OF ANALYSIS. Page _/_ of __/ CONTACT: Morgan Brown PHONE #: 907-451-2141 **SECTION 3 PRESERVATIVE** HN03 HN03 PROJECT/ H2S04 **PROJECT WHADA** NTP 22 464 PWSID/ SAMPLE NAME: ċ TYPE: PERMIT#: E-MAIL: Morgan.Brown@alaska.gov 된 S REPORTS TO: Morgan Brown Comp 200.8 Dissolved Metals (Lab Filter) 2340B Total hardness 5301B DOC (Lab Filter) SM4500 T-Phos, NO2 +NO3,TKN Grab Т 245.1 Total ші SM9222D Fecal Coliform QUOTE #: INVOICE TO: ADEC SM92223B (Multi-P.O. #: incre-MATRIX/ RESERVED mental) TIME DATE REMARKS/ SAMPLE IDENTIFICATION MATRIX FOR LAB MM/DD/YY HH:MM LOC ID CODE X 5 X X MAML 5\vi 6 5 9/15/22 11:02011 ANCHBACT 20-01 5 9:25/16 CHS 33 DATA DELIVERABLE REQUIREMENTS: SECTION 4 DOD Project? TIME RECEIVED BY: DATE RELINQUISHED BY: (1) COC ID: 12:027PM Cooler ID: REQUESTED TURNAROUND TIME AND/OR SPECIAL INSTRUCTIONS DATE TIME RECEIVED BY: RELINQUISHED BY:(2) TIME RECEIVED BY: DATE SECT **RELINQUISHED BY:(3)** TEMP BLANK °C: CHAIN OF CUSTODY SEAL: (CIRCLE) RECEIVED FOR LABORATORY BY: DATE TIME RELINQUISHED BY:(4) INTACT BROKEN ABSENT OR AMBIENT [] (See attached Sample Receipt Form) (See attached Sample Receipt Form) http://www.sgs.com/terms-and-conditions

e-Sample Receipt Form

SGS Workorder #:

1225639

Review Criteria	Condition (Yes, N	es, No, N/A Exceptions Noted below
Chain of Custody / Temperature Requirements	I	Note: Temperature and COC seal information is found on the chain of custody form
DOD only: Did all sample coolers have a corresponding	COC? N/A	A
If <0°C, were sample containers ice	free? N/A	A
Note containers receive	ed with ice:	<mark>e:</mark>
Identify any containers received at non-compliant te	•	
Holding Time / Documentation / Sample Condition Req		
Were samples received within analytical holding		
Do sample labels match COC? Record discrepa	ncies. Yes	
Note: If information on containers differs from COC, default information for login. If times differ <1hr, record details & login		
Were analytical requests	clear? Yes	es es
(i.e. method is specified for analyses with multiple option for me (Eg, BTEX 8021 vs 8260, Metals 6020 vs 200.8)	ethod	
Were proper containers (type/mass/volume/preservative)u Note: Exemption for metals analysis by 200.8/6020 in wa		
Volatile Analysis Requirements (VOC, GRO, LL-Hg	, etc.)	
Were all soil VOAs received with a corresponding % solids conta	ainer? N/A	A
Were Trip Blanks (e.g., VOAs, LL-Hg) in cooler with sam	nples? N/A	A
Were all water VOA vials free of headspace (e.g., bubbles ≤ 6		
Were all soil VOAs field extracted with Methanol+		
•		ce with standard procedures and may impact data quality.
<u>Additional</u>	notes (if ap	applicable):

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1225639001-A	HNO3 to pH < 2	OK			
1225639001-B	No Preservative Required	OK			
1225639001-C	No Preservative Required	OK			
1225639001-D	HNO3 to pH < 2	OK			
1225639001-E	No Preservative Required	OK			
1225639001-F	No Preservative Required	OK			
1225639001-G	H2SO4 to pH < 2	OK			
1225639002-A	HNO3 to pH < 2	OK			
1225639002-B	No Preservative Required	OK			
1225639002-C	No Preservative Required	OK			
1225639002-D	HNO3 to pH < 2	OK			
1225639002-E	No Preservative Required	OK			
1225639002-F	No Preservative Required	OK			
1225639002-G	H2SO4 to pH < 2	OK			
1225639003-A	HNO3 to pH < 2	OK			
1225639003-B	No Preservative Required	OK			
1225639003-C	No Preservative Required	OK			
1225639003-D	HNO3 to pH < 2	OK			
1225639003-E	No Preservative Required	OK			
1225639003-F	No Preservative Required	OK			
1225639003-G	H2SO4 to pH < 2	OK			
1225639004-A	HNO3 to pH < 2	OK			
1225639004-B	No Preservative Required	OK			
1225639004-C	No Preservative Required	OK			
1225639004-D	HNO3 to pH < 2	OK			
1225639004-E	No Preservative Required	OK			
1225639004-F	No Preservative Required	OK			
1225639004-G	H2SO4 to pH < 2	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Orlando, FL 10/03/22

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

SGS North America, Inc

1225639

SGS Job Number: FA99145

Sampling Date: 09/15/22

Report to:

justin.nelson@sgs.com

ATTN: Distribution6

Total number of pages in report: 16

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Norm Farmer **Technical Director**

Client Service contact: Andrea Colby 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, IL, UT, VT, WA, WI, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	5
Section 4: Sample Results	6
4.1: FA99145-1: CAM 6	7
4.2: FA99145-2: CHE 3	8
4.3: FA99145-3: ANCHBACT 20-01	9
4.4: FA99145-4: CHE 33	10
Section 5: Misc. Forms	11
5.1: Chain of Custody	12
Section 6: Metals Analysis - QC Data Summaries	14
6.1: Prep QC MP41262: Hg	15

Sample Summary

SGS North America, Inc

1225639

FA99145

Job No:

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
FA99145-1	09/15/22	11:55	09/22/22	AQ	Water	CAM 6
FA99145-2	09/15/22	11:00	09/22/22	AQ	Water	CHE 3
FA99145-3	09/15/22	10:15	09/22/22	AQ	Water	ANCHBACT 20-01
FA99145-4	09/15/22	09:25	09/22/22	AQ	Water	CHE 33

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS North America, Inc Job No: FA99145

Site: 1225639 Report Date: 10/3/2022 1:40:12 PM

On 09/22/2022, 4 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc - Orlando. at a maximum corrected temperature of 5 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. - Orlando Job Number of FA99145 was assigned to the project.

Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals Analysis By Method EPA 245.1

Matrix: AQ Batch ID: MP41262

Insufficient sample volume for Matrix QC.

SGS North America Inc. - Orlando certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc.- Orlando is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Summary of Hits Job Number: FA99145

Account: SGS North America, Inc

Project: 1225639 **Collected:** 09/15/22

Lab Sample ID	Client Sample ID	Result/				
Analyte		Qual	\mathbf{RL}	MDL	Units	Method

FA99145-1 CAM 6

No hits reported in this sample.

FA99145-2 CHE 3

No hits reported in this sample.

FA99145-3 ANCHBACT 20-01

No hits reported in this sample.

FA99145-4 CHE 33

No hits reported in this sample.

Orlando, FL

Section 4

Sample Results
Report of Analysis

Report of Analysis

Client Sample ID: CAM 6
Lab Sample ID: FA99145-1
Matrix: AQ - Water

Date Sampled: 09/15/22 **Date Received:** 09/22/22 **Percent Solids:** n/a

Project: 1225639

Total Metals Analysis

Analyte Result RLUnits DF Analyzed By Method **Prep Method** Prep EPA 245.1 $^{\mathrm{2}}$ EPA 245.1 ¹ Mercury < 0.50 0.50 09/30/22 09/30/22 JC ug/1 1

Report of Analysis

 Client Sample ID:
 CHE 3

 Lab Sample ID:
 FA99145-2
 Date Sampled:
 09/15/22

 Matrix:
 AQ - Water
 Date Received:
 09/22/22

 Percent Solids:
 n/a

Project: 1225639

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	09/30/22	09/30/22 јс	EPA 245.1 ¹	EPA 245.1 ²

Report of Analysis

Client Sample ID: ANCHBACT 20-01

Lab Sample ID: FA99145-3 **Date Sampled:** 09/15/22 Matrix: AQ - Water **Date Received:** 09/22/22 Percent Solids: n/a

Project: 1225639

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	09/30/22	09/30/22 јс	EPA 245.1 ¹	EPA 245.1 ²

Report of Analysis

Client Sample ID: CHE 33 Lab Sample ID: FA99145-4 **Date Sampled:** 09/15/22 Matrix: AQ - Water **Date Received:** 09/22/22 Percent Solids: n/a

Project: 1225639

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	09/30/22	09/30/22 јс	EPA 245.1 ¹	EPA 245.1 ²

Orlando, FL

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

SGS North America Inc. **CHAIN OF CUSTODY RECORD**

Texas

Virginia

Colorado

North Carolina Louisiana

														www.u	is.sgs.com
CLIENT:	SGS North Am	erica Inc Ala	ska Division		SG	S Refere	nce:			S	GS	Orla	ndo, FL		D 4 - 6 4
CONTACT:	Julie Shumway	PHONE NO:	(907) 56	62-2343	2-2343 Additional Comments		nents	: All soils report out in dry weight unless						Page 1 of 1	
PROJECT NAME:	1225639	PWSID#:			#	Preserv- ative	H _M O ³								
REPORTS TO	: Julie Shumway	E-MAIL:	Julie.Shumw		C O N T	TYPE C = COMP	Total								
	SGS - Alaska a.accounting@sgs.com	QUOTE #: P.O. #:	1225	639	A I	G = GRAB MI = Multi	245.1, To						e		
RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HHMM	MATRIX/ MATRIX CODE	E R S	Incre- mental Soils	Mercury				MS	MSD	SGS lab #		Location ID
1	CAM 6	09/15/2022	11:55:00	Water	1		Х						1225639001		
2	CHE 3	09/15/2022	11:00:00	Water	1		Х						1225639002		
3	ANCHBACT 20-01	09/15/2022	10:15:00	Water	1		Х						1225639003		
4	CHE 33	09/15/2022	09:25:00	Water	1		Х						1225639004		
Relinquished	By: (1)	Date	Time	Received	By:		9/22/	n	DOD	Projec	t?		NO	Data Deliv	erable Requirements
Sh	WALLEN	9/21/22	1058	Received	W	vi	150	20	Repoi	rt to DI port as I	L (J FI	ags)? /LOQ.	NO		Level 2
Relinquished	By: (2)	Date *	Time	Received	Ву:				Coole		ed T	urnaı	ound Time a	nd-or Spe	cial Instructions:
Relinquished	Ву: (3)	Date	Time	Received	Ву:										
									Temp	Blank	°C: /	4.4	+ IBI	Chain of	Custody Seal: (Circle
Relinquished I	Ву: (4)	Date	Time	Received	For Lai	boratory	By:				or A	mbien	t []	INTACT	BROKEN ABSEN
								- 1						-	

F088_COC_REF_LAB_20190411

[X 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301

[]5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

http://www.sgs.com/terms and conditions.htm

INITIAL ASSESSMENT

LABEL VERIFICATION

FA99145: Chain of Custody

Page 1 of 2

5.1

45

SGS Sample Receipt Summary

Job Number: FAS	99145	Clier	nt: SGSAKA		Project: 1225639			
Date / Time Received: 9/2	2/2022 3:00:0	00 PM	Delivery N	Method: FEDEX	Airbill #'s: 1483 4802	2 7327		
Therm ID: IR 1;			Therm CF	: 0.6;	# of Coole	rs: 1		
Cooler Temps (Raw Mea	sured) °C:	Cooler 1: (4	4.4);					
Cooler Temps (Cor	rected) °C:	Cooler 1: (5.0);					
Cooler Information	<u>Y</u>	or N		Sample Informa	ation	<u>Y</u> 0	r N	N/A
1. Custody Seals Present	✓			1. Sample labels	present on bottles	\checkmark		
Custody Seals Intact	\checkmark			2. Samples prese	erved properly	<u></u>		
Temp criteria achieved	✓			3. Sufficient volu	me/containers recvd for analysis:	<u></u>		
4. Cooler temp verification	IR Gu	<u>ın</u>		4. Condition of sa	ample	Intact		
5. Cooler media	Ice (E	Bag)		5. Sample recvd	within HT	✓		
				6. Dates/Times/II	Ds on COC match Sample Label	✓		
Trip Blank Information	<u>Y</u>	or N	<u>N/A</u>	7. VOCs have he	eadspace			✓
1. Trip Blank present / coole	r 🗌		✓	8. Bottles receive	ed for unspecified tests		\checkmark	
2. Trip Blank listed on COC			\checkmark	Compositing in	nstructions clear			\checkmark
	w	or S	N/A	10. Voa Soil Kits	Jars received past 48hrs?			\checkmark
3. Type Of TB Received		<u> </u>	<u> </u>	11. % Solids Jar	received?			\checkmark
3. Type Of 1B Received			V	12. Residual Chl	orine Present?			✓
Misc. Information								
Number of Encores: 25	-Gram	5-Gran	m	Number of 5035 Field Kits	s: Number of La	ab Filtered	Metals:	
Test Strip Lot #s:		_	315	pH 10-12 2198				
Residual Chlorine Test Str				· · · · · ·		·		
Comments								
SM001 Rev. Date 05/24/17 Tech	nnician: SAM	UELM	Date: 9	9/22/2022 3:00:00 PM	Reviewer:		Date:	

FA99145: Chain of Custody Page 2 of 2

Orlando, FL

Section 6

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA99145 Account: SGSAKA - SGS North America, Inc Project: 1225639

QC Batch ID: MP41262 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date: 09/30/22

Associated samples MP41262: FA99145-1, FA99145-2, FA99145-3, FA99145-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA99145
Account: SGSAKA - SGS North America, Inc
Project: 1225639

QC Batch ID: MP41262 Matrix Type: AQUEOUS Methods: EPA 245.1 Units: ug/l

Macrix Type: Mgolooc

Prep Date:

09/30/22

09/30/22

Metal	BSP Result	Spikelot HGFLWS1		QC Limits	BSP Result	Spikelot HGFLWS1		QC Limits
Mercury	3.1	3	103.3	85-115	2.9	3	96.7	85-115

Associated samples MP41262: FA99145-1, FA99145-2, FA99145-3, FA99145-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Laboratory Report of Analysis

To: ADEC-Air & Water Quality

610 University Drive Fairbanks, AK 99709 (907)451-2141

Report Number: 1225957
Client Project: WHADA

Dear Morgan Brown,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com

Sincerely,

Date

Print Date: 10/31/2022 3:47:06PM Results via Engage

Case Narrative

SGS Client: ADEC-Air & Water Quality SGS Project: 1225957 Project Name/Site: WHADA Project Contact: Morgan Brown

Refer to sample receipt form for information on sample condition.

MB for HBN 1845075 [MXX/35532] (1689762) MB

200.8 - Metals analyte Zinc is detected in the MB above the LOQ. The associated sample concentrations are either less than the LOQ or 5 times greater than the concentration in the MB.

1225945005B(1690916MS) (1690918) MS

4500NO3-F - Nitrate/Nitrite - MS recovery for nitrite is outside of QC criteria. Refer to LCS for accuracy requirements.

1225945005B(1690916MSD) (1690919) MSD

4500NO3-F - Nitrate/Nitrite - MSD recovery for nitrite is outside of QC criteria. Refer to LCS for accuracy requirements.

1225971001MS (1690920) MS

4500NO3-F - Nitrate/Nitrite - MS recovery for total nitrate/nitrite is outside of QC criteria. Refer to LCS for accuracy requirements.

Mercury 245.1 Total was analyzed by SGS of Orlando, FL.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

В Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit) Ε The analyte result is above the calibrated range.

GT Greater Than ΙB Instrument Blank

Initial Calibration Verification **ICV** The quantitation is an estimation. J LCS(D) Laboratory Control Spike (Duplicate) LLQC/LLIQC Low Level Quantitation Check Limit of Detection (i.e., 1/2 of the LOQ) LOD

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

Matrix Spike (Duplicate) MS(D)

Indicates the analyte is not detected. ND

RPD Relative Percent Difference TNTC Too Numerous To Count

Indicates the analyte was analyzed for but not detected. U

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 10/31/2022 3:47:09PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
WA01	1225957001	09/29/2022	09/29/2022	Water (Surface, Eff., Ground)
WA04	1225957002	09/29/2022	09/29/2022	Water (Surface, Eff., Ground)
WA01	1225957003	09/29/2022	09/29/2022	Water (Surface, Eff., Ground)
WA04	1225957004	09/29/2022	09/29/2022	Water (Surface, Eff., Ground)

MethodMethod DescriptionSM 5310BDissolved Organic Carbon

SM21 2340B Hardness as CaCO3 by ICP-MS

EP200.8 Metals in Drinking Water by ICP-MS DISSO

EP200.8 Metals in Water by 200.8 ICP-MS SM21 4500NO3-F Nitrate/Nitrite Flow injection Pres.

SM23 4500-N D TKN by Phenate (W)
SM21 4500P-B,E Total Phosphorus (W)

Detectable Results Summary

Client Sample ID: WA01			
Lab Sample ID: 1225957001	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Calcium	17000	ug/L
-	Hardness as CaCO3	54.0	mg/L
	Magnesium	2770	ug/L
Waters Department	Total Nitrate/Nitrite-N	0.383	mg/L
Client Sample ID: WA04			
Lab Sample ID: 1225957002	Parameter	Result	Units
Metals by ICP/MS	Calcium	29200	ug/L
motato by for the	Hardness as CaCO3	91.1	mg/L
	Magnesium	4440	ug/L
Waters Department	Total Nitrate/Nitrite-N	0.499	mg/L
Client Sample ID: WA01			
Lab Sample ID: 1225957003	Parameter	Result	Units
Dissolved Metals by ICP/MS	Aluminum	24.9	ug/L
Diocorroa motalo sy foi /mo	Barium	11.0	ug/L
	Calcium	16800	ug/L
	Magnesium	2700	ug/L
	Manganese	2.81	ug/L
	Potassium	553	ug/L
	Silicon	4750	ug/L
	Sodium	2720	ug/L
	Zinc	37.0	ug/L
Waters Department	TOC Average, Dissolved	3.85	mg/L
Client Sample ID: WA04			
Lab Sample ID: 1225957004	Parameter	Result	Units
Dissolved Metals by ICP/MS	Aluminum	63.4	ug/L
	Barium	12.9	ug/L
	Calcium	29000	ug/L
	Magnesium	4330	ug/L
	Manganese	3.13	ug/L
	Potassium	916	ug/L
	Silicon	5290	ug/L
	Sodium	3990	ug/L
	Zinc	23.9	ug/L
Waters Department	TOC Average, Dissolved	4.47	mg/L

Print Date: 10/31/2022 3:47:12PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **WA01**Client Project ID: **WHADA**Lab Sample ID: 1225957001
Lab Project ID: 1225957

Collection Date: 09/29/22 12:05 Received Date: 09/29/22 14:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	17000	500	150	ug/L	1		10/13/22 15:56
Magnesium	2770	50.0	15.0	ug/L	1		10/13/22 15:56

Batch Information

Analytical Batch: MMS11717 Analytical Method: EP200.8

Analyst: HGS Analytical Date/Time: 10/13/22 15:56

Analytical Date/Time: 10/13/22 Container ID: 1225957001-B

Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/05/22 09:57 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	54.0	5.00	5.00	mg/L	1		10/13/22 15:56

Batch Information

Analytical Batch: MMS11717 Analytical Method: SM21 2340B

Analyst: HGS

Analytical Date/Time: 10/13/22 15:56 Container ID: 1225957001-B Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/05/22 09:57 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: **WA01**Client Project ID: **WHADA**Lab Sample ID: 1225957001
Lab Project ID: 1225957

Collection Date: 09/29/22 12:05 Received Date: 09/29/22 14:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Nitrate/Nitrite-N	0.383	0.200	0.0500	mg/L	2		10/11/22 12:52

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 10/11/22 12:52 Container ID: 1225957001-C

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Phosphorus	0.0400 U	0.0400	0.0120	mg/L	1		10/06/22 12:04

Batch Information

Analytical Batch: WDA5353 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 10/06/22 12:04 Container ID: 1225957001-C Prep Batch: WXX14500 Prep Method: SM21 4500P-B,E Prep Date/Time: 10/06/22 10:08 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Kjeldahl Nitrogen	1.00 U	1.00	0.310	mg/L	1		10/10/22 18:33

Batch Information

Analytical Batch: WDA5356 Analytical Method: SM23 4500-N D

Analyst: IGK

Analytical Date/Time: 10/10/22 18:33 Container ID: 1225957001-C Prep Batch: WXX14507 Prep Method: METHOD Prep Date/Time: 10/10/22 18:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Client Sample ID: **WA04**Client Project ID: **WHADA**Lab Sample ID: 1225957002
Lab Project ID: 1225957

Collection Date: 09/29/22 13:10 Received Date: 09/29/22 14:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	29200	500	150	ug/L	1		10/13/22 15:58
Magnesium	4440	50.0	15.0	ug/L	1		10/13/22 15:58

Batch Information

Analytical Batch: MMS11717 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/13/22 15:58 Container ID: 1225957002-B Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/05/22 09:57 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	91.1	5.00	5.00	mg/L	1		10/13/22 15:58

Batch Information

Analytical Batch: MMS11717 Analytical Method: SM21 2340B

Analyst: HGS

Analytical Date/Time: 10/13/22 15:58 Container ID: 1225957002-B Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/05/22 09:57 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: **WA04**Client Project ID: **WHADA**Lab Sample ID: 1225957002
Lab Project ID: 1225957

Collection Date: 09/29/22 13:10 Received Date: 09/29/22 14:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Nitrate/Nitrite-N	0.499	0.200	0.0500	mg/L	2		10/11/22 12:53

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 10/11/22 12:53 Container ID: 1225957002-C

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Phosphorus	0.0400 U	0.0400	0.0120	mg/L	1		10/06/22 12:05

Batch Information

Analytical Batch: WDA5353 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 10/06/22 12:05 Container ID: 1225957002-C Prep Batch: WXX14500
Prep Method: SM21 4500P-B,E
Prep Date/Time: 10/06/22 10:08
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Kjeldahl Nitrogen	1.00 U	1.00	0.310	mg/L	1		10/10/22 18:34

Batch Information

Analytical Batch: WDA5356 Analytical Method: SM23 4500-N D

Analyst: IGK

Analytical Date/Time: 10/10/22 18:34 Container ID: 1225957002-C Prep Batch: WXX14507 Prep Method: METHOD Prep Date/Time: 10/10/22 18:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Client Sample ID: **WA01**Client Project ID: **WHADA**Lab Sample ID: 1225957003
Lab Project ID: 1225957

Collection Date: 09/29/22 12:05 Received Date: 09/29/22 14:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aluminum	24.9	20.0	6.20	ug/L	1		10/11/22 20:52
Antimony	1.00 U	1.00	0.310	ug/L	1		10/11/22 20:52
Arsenic	5.00 U	5.00	1.50	ug/L	1		10/11/22 20:52
Barium	11.0	3.00	0.940	ug/L	1		10/11/22 20:52
Beryllium	0.400 U	0.400	0.130	ug/L	1		10/11/22 20:52
Cadmium	0.500 U	0.500	0.150	ug/L	1		10/11/22 20:52
Calcium	16800	500	150	ug/L	1		10/11/22 20:52
Chromium	5.00 U	5.00	2.50	ug/L	1		10/11/22 20:52
Cobalt	4.00 U	4.00	1.20	ug/L	1		10/11/22 20:52
Copper	3.00 U	3.00	1.00	ug/L	1		10/11/22 20:52
Iron	250 U	250	78.0	ug/L	1		10/11/22 20:52
Lead	2.00 U	2.00	0.500	ug/L	1		10/11/22 20:52
Magnesium	2700	50.0	15.0	ug/L	1		10/11/22 20:52
Manganese	2.81	1.00	0.350	ug/L	1		10/11/22 20:52
Molybdenum	2.00 U	2.00	0.620	ug/L	1		10/11/22 20:52
Nickel	2.00 U	2.00	0.620	ug/L	1		10/11/22 20:52
Phosphorus	200 U	200	62.0	ug/L	1		10/11/22 20:52
Potassium	553	500	150	ug/L	1		10/11/22 20:52
Selenium	5.00 U	5.00	1.50	ug/L	1		10/11/22 20:52
Silicon	4750	1000	310	ug/L	1		10/11/22 20:52
Silver	1.00 U	1.00	0.310	ug/L	1		10/11/22 20:52
Sodium	2720	500	150	ug/L	1		10/11/22 20:52
Thallium	1.00 U	1.00	0.310	ug/L	1		10/11/22 20:52
Tin	1.00 U	1.00	0.310	ug/L	1		10/11/22 20:52
Titanium	6.25 U	6.25	3.13	ug/L	1		10/11/22 20:52
Vanadium	20.0 U	20.0	6.20	ug/L	1		10/11/22 20:52
Zinc	37.0	10.0	3.10	ug/L	1		10/27/22 13:06
				-			

Client Sample ID: **WA01**Client Project ID: **WHADA**Lab Sample ID: 1225957003
Lab Project ID: 1225957

Collection Date: 09/29/22 12:05 Received Date: 09/29/22 14:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

Batch Information

Analytical Batch: MMS11730 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/27/22 13:06 Container ID: 1225957003-B

Analytical Batch: MMS11714 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/11/22 20:52 Container ID: 1225957003-B Prep Batch: MXX35571 Prep Method: E200.2

Prep Date/Time: 10/19/22 15:00 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35532 Prep Method: E200.2

Prep Date/Time: 10/05/22 10:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: **WA01**Client Project ID: **WHADA**Lab Sample ID: 1225957003
Lab Project ID: 1225957

Collection Date: 09/29/22 12:05 Received Date: 09/29/22 14:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
TOC Average, Dissolved	3.85	1.00	0.400	mg/L	1		10/13/22 19:21

Batch Information

Analytical Batch: WTC3244 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 10/13/22 19:21 Container ID: 1225957003-D

Client Sample ID: **WA04**Client Project ID: **WHADA**Lab Sample ID: 1225957004
Lab Project ID: 1225957

Collection Date: 09/29/22 13:10 Received Date: 09/29/22 14:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	<u>Date Analyzed</u>
Aluminum	63.4	20.0	6.20	ug/L	1		10/11/22 20:54
Antimony	1.00 U	1.00	0.310	ug/L	1		10/11/22 20:54
Arsenic	5.00 U	5.00	1.50	ug/L	1		10/11/22 20:54
Barium	12.9	3.00	0.940	ug/L	1		10/11/22 20:54
Beryllium	0.400 U	0.400	0.130	ug/L	1		10/11/22 20:54
Cadmium	0.500 U	0.500	0.150	ug/L	1		10/11/22 20:54
Calcium	29000	500	150	ug/L	1		10/11/22 20:54
Chromium	5.00 U	5.00	2.50	ug/L	1		10/11/22 20:54
Cobalt	4.00 U	4.00	1.20	ug/L	1		10/11/22 20:54
Copper	3.00 U	3.00	1.00	ug/L	1		10/11/22 20:54
Iron	250 U	250	78.0	ug/L	1		10/11/22 20:54
Lead	2.00 U	2.00	0.500	ug/L	1		10/11/22 20:54
Magnesium	4330	50.0	15.0	ug/L	1		10/11/22 20:54
Manganese	3.13	1.00	0.350	ug/L	1		10/11/22 20:54
Molybdenum	2.00 U	2.00	0.620	ug/L	1		10/11/22 20:54
Nickel	2.00 U	2.00	0.620	ug/L	1		10/11/22 20:54
Phosphorus	200 U	200	62.0	ug/L	1		10/11/22 20:54
Potassium	916	500	150	ug/L	1		10/11/22 20:54
Selenium	5.00 U	5.00	1.50	ug/L	1		10/11/22 20:54
Silicon	5290	1000	310	ug/L	1		10/11/22 20:54
Silver	1.00 U	1.00	0.310	ug/L	1		10/11/22 20:54
Sodium	3990	500	150	ug/L	1		10/11/22 20:54
Thallium	1.00 U	1.00	0.310	ug/L	1		10/11/22 20:54
Tin	1.00 U	1.00	0.310	ug/L	1		10/11/22 20:54
Titanium	6.25 U	6.25	3.13	ug/L	1		10/11/22 20:54
Vanadium	20.0 U	20.0	6.20	ug/L	1		10/11/22 20:54
Zinc	23.9	10.0	3.10	ug/L	1		10/27/22 13:08
				-			

Client Sample ID: **WA04**Client Project ID: **WHADA**Lab Sample ID: 1225957004
Lab Project ID: 1225957

Collection Date: 09/29/22 13:10 Received Date: 09/29/22 14:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

Batch Information

Analytical Batch: MMS11730 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/27/22 13:08 Container ID: 1225957004-B

Analytical Batch: MMS11714 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/11/22 20:54 Container ID: 1225957004-B Prep Batch: MXX35571 Prep Method: E200.2

Prep Date/Time: 10/19/22 15:00 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35532 Prep Method: E200.2

Prep Date/Time: 10/05/22 10:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: **WA04**Client Project ID: **WHADA**Lab Sample ID: 1225957004
Lab Project ID: 1225957

Collection Date: 09/29/22 13:10 Received Date: 09/29/22 14:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
TOC Average, Dissolved	4.47	1.00	0.400	mg/L	1		10/13/22 19:36

Batch Information

Analytical Batch: WTC3244 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 10/13/22 19:36 Container ID: 1225957004-D

Method Blank

Blank ID: MB for HBN 1845075 [MXX/35532]

Blank Lab ID: 1689762

QC for Samples:

1225957003, 1225957004

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Aluminum	10.0U	20.0	6.20	ug/L
Antimony	0.500U	1.00	0.310	ug/L
Arsenic	2.50U	5.00	1.50	ug/L
Barium	1.50U	3.00	0.940	ug/L
Beryllium	0.200U	0.400	0.130	ug/L
Cadmium	0.250U	0.500	0.150	ug/L
Calcium	250U	500	150	ug/L
Chromium	2.50U	5.00	2.50	ug/L
Cobalt	2.00U	4.00	1.20	ug/L
Copper	1.50U	3.00	1.00	ug/L
Iron	125U	250	78.0	ug/L
Lead	1.00U	2.00	0.500	ug/L
Magnesium	25.0U	50.0	15.0	ug/L
Manganese	0.500U	1.00	0.350	ug/L
Molybdenum	1.00U	2.00	0.620	ug/L
Nickel	1.00U	2.00	0.620	ug/L
Phosphorus	100U	200	62.0	ug/L
Potassium	250U	500	150	ug/L
Selenium	2.50U	5.00	1.50	ug/L
Silicon	500U	1000	310	ug/L
Silver	0.500U	1.00	0.310	ug/L
Sodium	250U	500	150	ug/L
Thallium	0.500U	1.00	0.310	ug/L
Tin	0.500U	1.00	0.310	ug/L
Titanium	12.5U	25.0	7.75	ug/L
Vanadium	10.0U	20.0	6.20	ug/L

Batch Information

Analytical Batch: MMS11714 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/11/2022 8:01:00PM

Prep Batch: MXX35532 Prep Method: E200.2

Prep Date/Time: 10/5/2022 10:42:21AM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 10/31/2022 3:47:16PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225957 [MXX35532]

Blank Spike Lab ID: 1689763 Date Analyzed: 10/11/2022 20:04

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225957003, 1225957004

Results by EP200.8

Blank Spike (ug/L)											
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>							
Aluminum	1000	998	100	(85-115)							
Antimony	1000	1040	104	(85-115)							
Arsenic	1000	987	99	(85-115)							
Barium	1000	996	100	(85-115)							
Beryllium	100	103	103	(85-115)							
Cadmium	100	102	102	(85-115)							
Calcium	10000	10100	101	(85-115)							
Chromium	400	401	100	(85-115)							
Cobalt	500	500	100	(85-115)							
Copper	1000	1010	101	(85-115)							
Iron	5000	5280	106	(85-115)							
Lead	1000	1010	101	(85-115)							
Magnesium	10000	10400	104	(85-115)							
Manganese	500	498	100	(85-115)							
Molybdenum	400	391	98	(85-115)							
Nickel	1000	1010	101	(85-115)							
Phosphorus	500	511	102	(85-115)							
Potassium	10000	10200	102	(85-115)							
Selenium	1000	1020	102	(85-115)							
Silicon	10000	10500	105	(85-115)							
Silver	100	100	100	(85-115)							
Sodium	10000	10400	104	(85-115)							
Thallium	10	10.2	102	(85-115)							
Tin	100	103	103	(85-115)							
Titanium	100	103	103	(85-115)							
Vanadium	200	197	98	(85-115)							

Batch Information

Analytical Batch: MMS11714 Analytical Method: EP200.8

Instrument: P7 Agilent 7800

Analyst: HGS

Prep Batch: MXX35532
Prep Method: E200.2

Prep Date/Time: 10/05/2022 10:42

Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/31/2022 3:47:18PM

Matrix Spike Summary

Original Sample ID: 1689749 MS Sample ID: 1689766 MS

MSD Sample ID:

QC for Samples: 1225957003, 1225957004

Analysis Date: 10/11/2022 20:14 Analysis Date: 10/11/2022 20:17

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

		Ma	trix Spike (ug/L)	Spike Duplicate (ug/L)					
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Aluminum	10.0U	1000	993	99				70-130		
Antimony	1.47	1000	1040	103				70-130		
Arsenic	2.50U	1000	986	99				70-130		
Barium	8.76	1000	992	98				70-130		
Beryllium	0.134J	100	103	103				70-130		
Cadmium	0.250U	100	102	102				70-130		
Calcium	8230	10000	18100	99				70-130		
Chromium	2.50U	400	397	99				70-130		
Cobalt	2.00U	500	495	99				70-130		
Copper	3.33	1000	1010	100				70-130		
Iron	125U	5000	5160	103				70-130		
Lead	0.794J	1000	1020	102				70-130		
Magnesium	1490	10000	11700	102				70-130		
Manganese	12.6	500	505	99				70-130		
Molybdenum	3.11	400	387	96				70-130		
Nickel	3.93	1000	997	99				70-130		
Phosphorus	100U	500	496	99				70-130		
Potassium	263J	10000	10500	102				70-130		
Selenium	1.54J	1000	1020	102				70-130		
Silicon	784J	10000	11100	103				70-130		
Silver	0.500U	100	99.7	100				70-130		
Sodium	1320	10000	11500	102				70-130		
Thallium	0.500U	10.0	10.3	103				70-130		
Tin	0.500U	100	101	101				70-130		
Titanium	12.5U	100	104	104				70-130		
Vanadium	10.0U	200	196	98				70-130		

Batch Information

Analytical Batch: MMS11714 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/11/2022 8:17:00PM

Prep Batch: MXX35532

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 10/5/2022 10:42:21AM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Print Date: 10/31/2022 3:47:20PM

Method Blank

Blank ID: MB for HBN 1845076 [MXX/35533]

Blank Lab ID: 1689767

QC for Samples:

1225957001, 1225957002

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Calcium
 250U
 500
 150
 ug/L

 Magnesium
 25.0U
 50.0
 15.0
 ug/L

Batch Information

Analytical Batch: MMS11717 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/13/2022 3:21:00PM

Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/5/2022 9:57:23AM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 10/31/2022 3:47:21PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225957 [MXX35533]

Blank Spike Lab ID: 1689768 Date Analyzed: 10/13/2022 15:24

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225957001, 1225957002

Results by EP200.8

Blank Spike (ug/L)

 Parameter
 Spike
 Result
 Rec (%)
 CL

 Calcium
 10000
 9910
 99
 (85-115)

 Magnesium
 10000
 1010
 101
 (85-115)

Batch Information

Analytical Batch: MMS11717
Analytical Method: EP200.8

Instrument: P7 Agilent 7800

Analyst: HGS

Prep Batch: MXX35533
Prep Method: E200.2

Prep Date/Time: 10/05/2022 09:57

Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/31/2022 3:47:23PM

Matrix Spike Summary

Original Sample ID: 1689751 MS Sample ID: 1689771 MS

MSD Sample ID:

QC for Samples: 1225957001, 1225957002

Analysis Date: 10/13/2022 15:34 Analysis Date: 10/13/2022 15:37

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

Matrix Spike (ug/L) Spike Duplicate (ug/L)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

 Calcium
 64300
 10000
 73200
 89
 70-130

 Magnesium
 17800
 10000
 27100
 94
 70-130

Batch Information

Analytical Batch: MMS11717 Analytical Method: EP200.8

Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/13/2022 3:37:00PM

Prep Batch: MXX35533

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 10/5/2022 9:57:23AM

Prep Initial Wt./Vol.: 20.00mL

Prep Extract Vol: 50.00mL

Print Date: 10/31/2022 3:47:24PM

Method Blank

Blank ID: MB for HBN 1846699 [MXX/35571]

Blank Lab ID: 1692375

QC for Samples:

1225957003, 1225957004

Matrix: Water (Surface, Eff., Ground)

<u>Units</u>

ug/L

Results by EP200.8

 Parameter
 Results
 LOQ/CL
 DL

 Zinc
 6.02J
 10.0
 3.10

Batch Information

Analytical Batch: MMS11732 Analytical Method: EP200.8

Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/28/2022 12:56:19PM

Prep Batch: MXX35571 Prep Method: E200.2

Prep Date/Time: 10/19/2022 3:00:38PM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 10/31/2022 3:47:29PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225957 [MXX35571]

Blank Spike Lab ID: 1692376 Date Analyzed: 10/27/2022 12:26

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225957003, 1225957004

Results by EP200.8

Blank Spike (ug/L)

 Parameter
 Spike
 Result
 Rec (%)
 CL

 Zinc
 1000
 991
 99
 (85-115)

Batch Information

Analytical Batch: MMS11730 Prep Batch: MXX35571
Analytical Method: EP200.8 Prep Method: E200.2

Instrument: P7 Agilent 7800 Prep Date/Time: 10/19/2022 15:00

Analyst: **HGS**Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/31/2022 3:47:31PM

Matrix Spike Summary

Original Sample ID: 1692367 MS Sample ID: 1692379 MS

MSD Sample ID:

QC for Samples: 1225957003, 1225957004

Analysis Date: 10/27/2022 12:36 Analysis Date: 10/27/2022 12:39

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

Matrix Spike (ug/L) Spike Duplicate (ug/L)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Zinc 32.2 1000 988 96 70-130

Batch Information

Analytical Batch: MMS11730 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/27/2022 12:39:19PM

Prep Batch: MXX35571

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 10/19/2022 3:00:38PM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Print Date: 10/31/2022 3:47:32PM

Method Blank

Blank ID: MB for HBN 1845813 (WFI/3009)

Blank Lab ID: 1690929

QC for Samples:

1225957001, 1225957002

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500NO3-F

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Nitrate-N	0.100U	0.200	0.0500	mg/L
Nitrite-N	0.100U	0.200	0.0500	mg/L
Total Nitrate/Nitrite-N	0.100U	0.200	0.0500	mg/L

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 10/11/2022 12:24:06PM

Print Date: 10/31/2022 3:47:33PM

Method Blank

Blank ID: MB for HBN 1845813 (WFI/3009)

Blank Lab ID: 1690936

QC for Samples:

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500NO3-F

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Nitrate-N	0.100U	0.200	0.0500	mg/L
Nitrite-N	0.100U	0.200	0.0500	mg/L
Total Nitrate/Nitrite-N	0.100U	0.200	0.0500	mg/L

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 10/11/2022 11:36:50AM

Print Date: 10/31/2022 3:47:33PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225957 [WFI3009]

Blank Spike Lab ID: 1690931 Date Analyzed: 10/11/2022 12:22

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225957001, 1225957002

Results by SM21 4500NO3-F

Blank Spike (mg/L)								
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>				
Nitrate-N	2.5	2.62	105	(70-130)				
Nitrite-N	2.5	2.49	100	(90-110)				
Total Nitrate/Nitrite-N	5	5.11	102	(90-110)				

Batch Information

Analytical Batch: WFI3009

Analytical Method: **SM21 4500NO3-F** Instrument: **Astoria segmented flow**

Analyst: **EBH**

Print Date: 10/31/2022 3:47:35PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225957 [WFI3009]

Blank Spike Lab ID: 1690938 Date Analyzed: 10/11/2022 11:35

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

Results by SM21 4500NO3-F

Blank Spike (mg/L)									
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>					
Nitrate-N	2.5	2.32	93	(70-130)					
Nitrite-N	2.5	2.35	94	(90-110)					
Total Nitrate/Nitrite-N	5	4.66	93	(90-110)					

Batch Information

Analytical Batch: WFI3009

Analytical Method: **SM21 4500NO3-F** Instrument: **Astoria segmented flow**

Analyst: **EBH**

Print Date: 10/31/2022 3:47:35PM

Matrix Spike Summary

Original Sample ID: 1690916 MS Sample ID: 1690918 MS MSD Sample ID: 1690919 MSD

QC for Samples: 1225957001, 1225957002

Analysis Date: 10/11/2022 11:43 Analysis Date: 10/11/2022 11:45 Analysis Date: 10/11/2022 11:47

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500NO3-F

		Matrix Spike (mg/L)		Spike	e Duplicate	e (mg/L)				
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Nitrate-N	0.293	2.50	3.26	119	2.50	3.45	126	70-130	5.80	(< 25)
Nitrite-N	0.100U	2.50	2	* 08	2.50	2.15	86 *	90-110	7.10	(< 25)
Total Nitrate/Nitrite-N	0.307	5.00	5.26	99	5.00	5.60	106	90-110	6.30	(< 25)

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 10/11/2022 11:45:36AM

Print Date: 10/31/2022 3:47:37PM

Matrix Spike Summary

Original Sample ID: 1225971001 MS Sample ID: 1690920 MS MSD Sample ID: 1690921 MSD Analysis Date: 10/11/2022 13:13 Analysis Date: 10/11/2022 13:14 Analysis Date: 10/11/2022 13:16

Matrix: Drinking Water

QC for Samples: 1225957001, 1225957002

Results by SM21 4500NO3-F

Matrix Spike (mg/L) Spike Duplicate (mg/L)

Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL

 Parameter
 Sample
 Spike
 Result
 Rec (%)
 Spike
 Result
 Rec (%)
 CL
 RPD (%)
 RPD CL

 Total Nitrate/Nitrite-N
 5.85
 10.0
 14.3
 84
 *
 10.0
 15.2
 94
 90-110
 6.40
 (< 25)</td>

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 10/11/2022 1:14:00PM

Print Date: 10/31/2022 3:47:37PM

Method Blank

Blank ID: MB for HBN 1845141 [WXX/14500]

Blank Lab ID: 1690021

QC for Samples:

1225957001, 1225957002

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500P-B,E

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Phosphorus
 0.0200U
 0.0400
 0.0120
 mg/L

Batch Information

Analytical Batch: WDA5353 Analytical Method: SM21 4500P-B,E Instrument: Discrete Analyzer 2

Analyst: MEB

Analytical Date/Time: 10/6/2022 11:49:00AM

Prep Batch: WXX14500 Prep Method: SM21 4500P-B,E Prep Date/Time: 10/6/2022 10:08:00AM

Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 10/31/2022 3:47:42PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225957 [WXX14500]

Blank Spike Lab ID: 1690022 Date Analyzed: 10/06/2022 11:50 Spike Duplicate ID: LCSD for HBN 1225957

[WXX14500]

Spike Duplicate Lab ID: 1690023 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225957001, 1225957002

Results by SM21 4500P-B,E

Blank Spike (mg/L) Spike Duplicate (mg/L)

<u>Parameter</u> Spike Result Rec (%) <u>Spike</u> Rec (%) RPD (%) RPD CL Result **Total Phosphorus** 0.204 102 0.2 0.196 (< 25)0.2 98 (75-125)3.70

Batch Information

Analytical Batch: WDA5353 Analytical Method: SM21 4500P-B,E Instrument: Discrete Analyzer 2

Analyst: MEB

Prep Batch: WXX14500
Prep Method: SM21 4500P-B,E
Prep Date/Time: 10/06/2022 10:08

Spike Init Wt./Vol.: 0.2 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: 0.2 mg/L Extract Vol: 25 mL

Print Date: 10/31/2022 3:47:44PM

Matrix Spike Summary

Original Sample ID: 1225881001 MS Sample ID: 1690024 MS MSD Sample ID: 1690025 MSD

QC for Samples: 1225957001, 1225957002

Analysis Date: 10/06/2022 11:52 Analysis Date: 10/06/2022 11:53 Analysis Date: 10/06/2022 11:54

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500P-B,E

Matrix Spike (mg/L) Spike Duplicate (mg/L)

<u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL **Total Phosphorus** 0.0633 0.200 .27 103 0.200 0.267 102 75-125 0.89 (< 10)

Batch Information

Analytical Batch: WDA5353 Analytical Method: SM21 4500P-B,E Instrument: Discrete Analyzer 2

Analyst: MEB

Analytical Date/Time: 10/6/2022 11:53:00AM

Prep Batch: WXX14500

Prep Method: Total Phosphorus (W) Ext. Prep Date/Time: 10/6/2022 10:08:00AM

Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 10/31/2022 3:47:45PM

Method Blank

Blank ID: MB for HBN 1845773 [WXX/14507]

Blank Lab ID: 1690731

QC for Samples:

1225957001, 1225957002

Matrix: Water (Surface, Eff., Ground)

Results by SM23 4500-N D

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Kjeldahl Nitrogen
 0.500U
 1.00
 0.310
 mg/L

Batch Information

Analytical Batch: WDA5356 Analytical Method: SM23 4500-N D Instrument: Discrete Analyzer 2

Analyst: IGK

Analytical Date/Time: 10/10/2022 6:29:37PM

Prep Batch: WXX14507 Prep Method: METHOD

Prep Date/Time: 10/10/2022 6:00:00PM

Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 10/31/2022 3:47:46PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225957 [WXX14507]

Blank Spike Lab ID: 1690732 Date Analyzed: 10/10/2022 18:30 Spike Duplicate ID: LCSD for HBN 1225957

[WXX14507]

Spike Duplicate Lab ID: 1690733 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225957001, 1225957002

Results by SM23 4500-N D

	I	Blank Spike	e (mg/L) Spike Duplicate (mg/L)						
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Total Kjeldahl Nitrogen	4	4.06	102	4	3.75	94	(75-125)	7.90	(< 25)

Batch Information

Analytical Batch: WDA5356 Analytical Method: SM23 4500-N D Instrument: Discrete Analyzer 2

Analyst: IGK

Prep Batch: **WXX14507**Prep Method: **METHOD**

Prep Date/Time: 10/10/2022 18:00

Spike Init Wt./Vol.: 4 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: 4 mg/L Extract Vol: 25 mL

Print Date: 10/31/2022 3:47:48PM

Matrix Spike Summary

Original Sample ID: 1225957002 MS Sample ID: 1690734 MS MSD Sample ID: 1690735 MSD

QC for Samples: 1225957001, 1225957002

Analysis Date: 10/10/2022 18:34 Analysis Date: 10/10/2022 18:36 Analysis Date: 10/10/2022 18:37 Matrix: Water (Surface, Eff., Ground)

Results by SM23 4500-N D

Matrix Spike (mg/L) Spike Duplicate (mg/L)

<u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL Total Kjeldahl Nitrogen 1.00U 4.00 3.94 98 4.00 4.12 103 75-125 4.60 (< 25)

Batch Information

Analytical Batch: WDA5356 Analytical Method: SM23 4500-N D Instrument: Discrete Analyzer 2

Analyst: IGK

Analytical Date/Time: 10/10/2022 6:36:11PM

Prep Batch: WXX14507

Prep Method: Distillation TKN by Phenate (W) Prep Date/Time: 10/10/2022 6:00:00PM

Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 10/31/2022 3:47:49PM

SGS NORTH AMERICA INC. CHAIN OF CUSTODY RECORD

profile# 385380 vorze

									マン			s.upseessesses					
	CLIENT: ADEC					INSTE OMI:			SECT Y DEL								Pageof
-	сонтаст: PHO Morgan Brown	NE #: 907-	451 - 214 <i>°</i>	1	SEC	TION 3				Р	RESE	RVATIV	Έ				
SECTION	NAME: WHADA PWS	JECT/ ID/ NTP MIT#:	22 464		# C	SAMPLE TYPE:	Na2SO4	Na2SO4	HNO3		HNO3		H2SO4				
SE	REPORTS TO: Morgan Brown	AIL: Morgar	n.Brown@a	laska.gov	O N T	Comp Grab		. Coli	Total Hg	S	dness	Filter)	NO2				
	INVOICE TO: ADEC QUOTE #: P.O. #:			A I N	MI (Multi- incre-	D Fecal	23B E	I Tota	200.8 Diss Metals (Lab Filter)	2340B Total hardness	5310B DOC (Lab Filter)	SM4500 T-Phos, NO2 +NO3,TKN					
SA	RESERVED FOR LAB SAMPLE IDENTIFICATION USE	DATE MM/DD/YY	TIME HH:MM	MATRIX/ MATRIX CODE	E R S	mental)	SM9222D Fecal Coliform	SM9223B	245.1	200.8 Di (Lab Filt	2340B ⁻	5310B E	SM4500 +NO3,TI				REMARKS/ LOC ID
ment	IAK (SAD) WAOI	9/29/22	12:05	SV	5	G			×	χ	X	*	X				
anage	SAC (TAD) WA Ø4	7/29/22	1:18PM	SW	5	G			X	×	Х	X	X				
on N	7	1700.00															
န်ပြ																	

SE																	
ed trac	A Committee of the Comm																
gistere	ACCOUNT (ACCOUNT)																
s a re																	
SGS																	
- Jed	RELINQUISHED BY: (1)	DATE	TIME	RECEIVED	BY:				SEC1	ION 4	DOD	Project	?		DATA	DELIVE	RABLE REQUIREMENTS:
s rese		9/29/22	2:11 PM	1					COCI	D:	•						
ll right	DELINOUS PANA	DATE	TIME	RECEIVED	BV.	\rightarrow			Coole		LIDNAS	OLIND T	IME AND	IOB SPS	CIAL IN	STOLICT	IONS
© SGS North America Inc. – 2014 – All rights reserved - SGS is a registered trademark of SGS Group Management SA SECTION 2	RELINQUIS/ED BY:(2)	DAIE	IIME	LECEIVED)		KEUUE	ו עםונט	UKNAKI	COND II	IIVIE ANU	7UR 3PE	OME IN	GIRUUI	IONG
E E	RELINQUISHED BY:(3)	DATE	TIME	RECEIVED	BY:				1								
America										Т	EMP B	LANK	°c: 262		CHAI	N OF C	USTODY SEAL; (CIRCLE)
North	RELINQUISHED BY:(4)	DATE	TIME	RECEIVED	FOR LA	BORATO	RY BY			C	OR AMI	BIENT	ĹĬ		INT	ACT	BROKEN ABSEN
© SGS		9/29/22	14:15	a-	, L	<u></u>		55					eipt For	m)	(Se	ee attach	ed Sample Receipt Form)

COC	e-Sam <u>p</u>	le Receipt F	orm	
<u> 202</u>	SGS Workorder #:	12	25957	1225957
R	eview Criteria	Condition (Yes, No	N/A E	xceptions Noted below
	dy / Temperature Requirements		ote: Temperature and COC s	seal information is found on the chain of custody form
DOD only: Did all sa	ample coolers have a corresponding (
	If <0°C, were sample containers ice			
	Note containers receive	ed with ice:		
	ntainers received at non-compliant ter	is needed)		
	-		te: Refer to form F-083 "Samp	ole Guide" for specific holding times and sample containers.
•	bles received within analytical holding			
Do sample	labels match COC? Record discrepa	ncies. Yes		
	containers differs from COC, default nes differ <1hr, record details & login			
	Were analytical requests	clear? Yes		
(Eg, BTEX 802	or analyses with multiple option for me 1 vs 8260, Metals 6020 vs 200.8)			
	ers (type/mass/volume/preservative)u			
Note: Exemption fo	r metals analysis by 200.8/6020 in wa	ater.		
Volatile Analysis R	equirements (VOC, GRO, LL-Hg	ı, etc.)		
Vere all soil VOAs receive	d with a corresponding % solids conta	ainer? N/A		
Were Trip Blanks (e.g., VOAs, LL-Hg) in cooler with sam	nples? N/A		
	free of headspace (e.g., bubbles ≤ 6			
	VOAs field extracted with Methanol+			
Note to Client: An	y "No", answer above indicates non-c			ures and may impact data quality.
	<u>Additional ı</u>	notes (if ap	plicable):	

F102b_SRFpm_20210526 38 of 56

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1225957001-A	HNO3 to pH < 2	ОК			
1225957001-B	HNO3 to pH < 2	OK			
1225957001-C	H2SO4 to pH < 2	OK			
1225957002-A	HNO3 to pH < 2	OK			
1225957002-B	HNO3 to pH < 2	OK			
1225957002-C	H2SO4 to pH < 2	OK			
1225957003-A	No Preservative Required	OK			
1225957003-B	HNO3 to pH < 2	OK			
1225957003-C	No Preservative Required	OK			
1225957003-D	HCL to pH < 2	OK			
1225957004-A	No Preservative Required	OK			
1225957004-B	HNO3 to pH < 2	OK			
1225957004-C	No Preservative Required	OK			
1225957004-D	HCL to pH < 2	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Orlando, FL 10/19/22

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Technical Report for

SGS North America, Inc

1225957

SGS Job Number: FA99406

Sampling Date: 09/29/22

Report to:

SGS North America, Inc 200 W Potter Dr Anchorage, AK 99518 justin.nelson@sgs.com; env.alaska.reflabteam@sgs.com

ATTN: Justin Nelson

Total number of pages in report: 17

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Norm Farmer Technical Director

Client Service contact: Andrea Colby 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, IL, UT, VT, WA, WI, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425 of SGS is the sole authority for authorizing edits or modifications to this document.

Unauthorized modification of this report is strictly prohibited.

Review standard terms at: http://www.sgs.com/en/terms-and-conditions

Please share your ideas about how we can serve you better at:
EHS.US.CustomerCare@sgs.com

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	5
Section 4: Sample Results	
4.1: FA99406-1: WA01	7
4.2: FA99406-2: WA04	8
Section 5: Misc. Forms	9
5.1: Chain of Custody	10
Section 6: Metals Analysis - QC Data Summaries	
6.1: Prep OC MP41342: Hg	13

Sample Summary

SGS North America, Inc

1225957

Job No: FA99406

Sample	Sample Collected			Matrix			Client			
Number	Date	Time By	Received	Code	Type	San	mple ID			
FA99406-1	09/29/22	12:05	10/05/22	AQ	Water	WA	A01			
FA99406-2	09/29/22	13:10	10/05/22	AQ	Water	WA	A04			

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS North America, Inc Job No: FA99406

Site: 1225957 Report Date: 10/19/2022 4:45:22 PM

On 10/05/2022, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc - Orlando. at a maximum corrected temperature of 16.4 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. - Orlando Job Number of FA99406 was assigned to the project.

Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals Analysis By Method EPA 245.1

Matrix: AQ Batch ID: MP41342

Sample(s) FA99616-1DUP, FA99616-1MS, FA99616-1MSD, FA99616-1SDL were used as the QC samples for metals.

SGS North America Inc. - Orlando certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc.- Orlando is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Page 1 of 1

C

Summary of Hits Job Number: FA99406

Account: SGS North America, Inc

Project: 1225957 **Collected:** 09/29/22

FA99406-1 WA01

No hits reported in this sample.

FA99406-2 WA04

No hits reported in this sample.

Orlando, FL

Section 4

Sample Results		
Report of Analysis	3	

Page 1 of 1

4

Report of Analysis

Client Sample ID: WA01 Lab Sample ID: FA99406-1 Matrix: AQ - Water

Date Sampled: 09/29/22
Date Received: 10/05/22
Percent Solids: n/a

Project: 1225957

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	10/18/22	10/18/22 јс	EPA 245.1 ¹	EPA 245.1 ²

(1) Instrument QC Batch: MA18984(2) Prep QC Batch: MP41342

Page 1 of 1

4

Report of Analysis

 Client Sample ID:
 WA04

 Lab Sample ID:
 FA99406-2
 Date Sampled:
 09/29/22

 Matrix:
 AQ - Water
 Date Received:
 10/05/22

 Percent Solids:
 n/a

Project: 1225957

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	10/18/22	10/18/22 јс	EPA 245.1 ¹	EPA 245.1 ²

(1) Instrument QC Batch: MA18984(2) Prep QC Batch: MP41342

Misc. Forms

Orlando, FL

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

SGS North America Inc. CHAIN OF CUSTODY RECORD

L**ocations Nationwi** Alaska Fl

Alaska New Jersey Texas

Colorado North Carolina

Virginia Louisiana

					000							<u> </u>			
CLIENT:		erica Inc Alaska Division SGS Refer							SGS Orlando, FL						Page 1 of 1
CONTACT:	Julio Shumway	PHONE NO:	(907) 56	2-2343	Addi	tional	Comn	nents	: All	soils	repo	rt ou	t in dry weigl	nt unless	
PROJECT NAME:	1225957	PWSID#:			# C	Preserv- ative Used:	HINO3								
REPORTS TO:	: Julie Shumway "	E-MAIL:	Julie:Shumwa	ay@sqs.con	4 '	TYPE	Ì								
	Ichone sys.com	Env.Alaska.	RefLabTeam(@sgs.com	N T	C =	<u> </u>								
	SGS - Alaska	QUOTE #:			À	G = GRAB	1, Total								
env.alask	a.accounting@sgs.com	P.O. #:	1225	957	ı N	MI =	245.1								
RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HHMM	MATRIX/ MATRIX CODE	E R S	Incre- mental Soils	Mercury 2				MS	MSD	SGS lab #		ocation ID
1	WA01	09/29/2022	12:05:00	Water	1		X						1225957001		
2	WA04	09/29/2022	13:10:00	Water	1		Х						1225957002		
							_					_			
							_			_	_				
								_	-	_	-				
														-	
Relinguished E	By: (1)	Date	Time	Received I	Ву:	(0 5(21	DOD F	Project	?		NO	Data Delive	rable Requirements
- for	bold	10/4	1100	hu	m	n.	10	00	Repor	t to DI port as (L (J FI	ags)? //LOQ.	NO		Level 2
elinquished l	Зу: (2)	Date	Time	Received I	Зу:				Coole						
300									Requested Turnaround Time a				ound Time a	nd-or Spec	ial Instructions:
elinquished E	By: (3)	Date	Time	Received I	ved By:										
Relinquished By: (4)									Temp Blank °C: 15, SCIM				SCINI	Chain of Custody Seal: (Circl	
		Date	Time	Received I	Received For Laboratory E					or Ambient []			11	INTACT BROKEN ABSEN	

[X 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 [5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557 http://www.sgs.com/terms and conditions.htm

AL ASSESSMENT Z

ABEL VERIFICATION

Tun

F088_COC_REF_LAB_20190411

FA99406: Chain of Custody Page 1 of 2

5.1

SGS Sample Receipt Summary

Job Number: FA	99406	_ c	lient: SGSAK	A	Project: 1225957					
Date / Time Received: 10/5/2022 10:00:00 AM				y Method: FEDEX	Airbill #'s: 1483 480	Airbill #'s: 1483 4802 7670				
Therm ID: IR 1;			Therm	CF: 0.6;	# of Coole	rs: 1				
Cooler Temps (Raw Me	asured) °C:	Cooler	1: (15.8);							
Cooler Temps (Co	rrected) °C:	Cooler	1: (16.4);							
Cooler Information	<u>Y</u>	or N	_	Sample Info	rmation	<u>Y</u> 0	or N	N/A		
1. Custody Seals Present	✓			1. Sample lab	els present on bottles	\checkmark	П			
Custody Seals Intact	✓			2. Samples p	eserved properly	<u></u>				
Temp criteria achieved	✓			3. Sufficient v	olume/containers recvd for analysis:	✓				
4. Cooler temp verification	<u>IR G</u>	<u>Sun</u>		4. Condition of	f sample	Intact				
5. Cooler media	lce (Bag)		5. Sample red	vd within HT	✓				
				6. Dates/Time	s/IDs on COC match Sample Label	✓				
Trip Blank Information	<u>Y</u>	or N	_N/A_	7. VOCs have	headspace			✓		
1. Trip Blank present / coole	er 🗌		\checkmark	8. Bottles rec	eived for unspecified tests		✓			
2. Trip Blank listed on COC			\checkmark	Compositir	g instructions clear			\checkmark		
	w	or S	S N/A	10. Voa Soil I	(its/Jars received past 48hrs?			✓		
3. Type Of TB Received		<u> </u>		11. % Solids	Jar received?			\checkmark		
3. Type Of 1B Received		L		12. Residual	Chlorine Present?			\checkmark		
Misc. Information										
Number of Encores: 25	5-Gram	5-0	Gram	Number of 5035 Field	Kits: Number of L	ab Filtered	Metals:			
Test Strip Lot #s:			230315				_			
Residual Chlorine Test St										
Comments										
SM001 Rev. Date 05/24/17 Tec	hnician: SAN	MUELM	Date	: <u>10/5/2022 10:00:00 A</u>	Reviewer:		Date:			

FA99406: Chain of Custody

Page 2 of 2

Orlando, FL

Section 6

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA99406 Account: SGSAKA - SGS North America, Inc Project: 1225957

QC Batch ID: MP41342 Methods: EPA 245.1

Prep Date: 10/18/22

Units: ug/l

Associated samples MP41342: FA99406-1, FA99406-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

(anr) Analyte not requested

Matrix Type: AQUEOUS

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA99406 Account: SGSAKA - SGS North America, Inc Project: 1225957

QC Batch ID: MP41342

Methods: EPA 245.1 Units: ug/l

Matrix Type: AQUEOUS

Prep Date:

10/18/22

10/18/22

Metal	FA99616- Original		RPD	QC Limits	FA99616-3 Original		Spikelot HGFLWS1	% Rec	QC Limits
Mercury	0.0	0.0	NC	0-10	0.0	2.4	3	80.0	70-130

Associated samples MP41342: FA99406-1, FA99406-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA99406 Account: SGSAKA - SGS North America, Inc Project: 1225957

QC Batch ID: MP41342 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

10/18/22

Metal	FA99616 Origina		Spikelo HGFLWS1	ot L % Rec	MSD RPD	QC Limit
Mergury	0 0	2 5	2	83 3	4 1	

Associated samples MP41342: FA99406-1, FA99406-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

Login Number: FA99406 Account: SGSAKA - SGS North America, Inc Project: 1225957

QC Batch ID: MP41342 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 10/18/22

Metal	BSP Result	Spikelot HGFLWS1		QC Limits
Mercury	3.0	3	100.0	85-115

Associated samples MP41342: FA99406-1, FA99406-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA99406 Account: SGSAKA - SGS North America, Inc Project: 1225957

QC Batch ID: MP41342 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 10/18/22

Associated samples MP41342: FA99406-1, FA99406-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

(anr) Analyte not requested

Laboratory Report of Analysis

To: ADEC-Air & Water Quality

610 University Drive Fairbanks, AK 99709 (907)451-2141

Report Number: 1225959

Client Project: WHADA

Dear Morgan Brown,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Justin at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Justin Nelson Project Manager Justin.Nelson@sgs.com Date

Print Date: 10/31/2022 3:48:27PM Results via Engage

Case Narrative

SGS Client: ADEC-Air & Water Quality SGS Project: 1225959 Project Name/Site: WHADA Project Contact: Morgan Brown

Refer to sample receipt form for information on sample condition.

MB for HBN 1845075 [MXX/35532] (1689762) MB

200.8 - Metals analyte Zinc is detected in the MB above the LOQ. The associated sample concentrations are either less than the LOQ or 5 times greater than the concentration in the MB.

1225945005B(1690916MS) (1690918) MS

4500NO3-F - Nitrate/Nitrite - MS recovery for nitrite is outside of QC criteria. Refer to LCS for accuracy requirements.

1225945005B(1690916MSD) (1690919) MSD

4500NO3-F - Nitrate/Nitrite - MSD recovery for nitrite is outside of QC criteria. Refer to LCS for accuracy requirements.

1225971001MS (1690920) MS

4500NO3-F - Nitrate/Nitrite - MS recovery for total nitrate/nitrite is outside of QC criteria. Refer to LCS for accuracy requirements.

Mercury 245.1 Total was analyzed by SGS of Orlando, FL.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 10/31/2022 3:48:29PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID Che 3	<u>Lab Sample ID</u> 1225959001	Collected 09/30/2022	Received 09/30/2022	Matrix Water (Surface, Eff., Ground)
Che 33	1225959001	09/30/2022	09/30/2022	Water (Surface, Eff., Ground)
AnchBact20-01	1225959003	09/30/2022	09/30/2022	Water (Surface, Eff., Ground)
Cam 6	1225959004	09/30/2022	09/30/2022	Water (Surface, Eff., Ground)
Che 3	1225959005	09/30/2022	09/30/2022	Water (Surface, Eff., Ground)
Che 33	1225959006	09/30/2022	09/30/2022	Water (Surface, Eff., Ground)
AnchBact20-01	1225959007	09/30/2022	09/30/2022	Water (Surface, Eff., Ground)
Cam 6	1225959008	09/30/2022	09/30/2022	Water (Surface, Eff., Ground)

MethodMethod DescriptionSM 5310BDissolved Organic CarbonSM21 2340BHardness as CaCO3 by ICP-MS

EP200.8 Metals in Drinking Water by ICP-MS DISSO

EP200.8 Metals in Water by 200.8 ICP-MS SM21 4500NO3-F Nitrate/Nitrite Flow injection Pres.

SM23 4500-N D TKN by Phenate (W)
SM21 4500P-B,E Total Phosphorus (W)

Detectable Results Summary

Client Sample ID: Che 3			
Lab Sample ID: 1225959001	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Calcium	40600	ug/L
	Hardness as CaCO3	132	mg/L
	Magnesium	7540	ug/L
Waters Department	Total Nitrate/Nitrite-N	0.814	mg/L
Client Sample ID: Che 33			
Lab Sample ID: 1225959002	Parameter	Result	Units
Metals by ICP/MS	Calcium	21900	ug/L
Metals by ICF/MS	Hardness as CaCO3	69.1	mg/L
	Magnesium	3500	ug/L
Waters Department	Total Nitrate/Nitrite-N	0.397	mg/L
·	Total Milato/Milato M	0.007	g/ _
Client Sample ID: AnchBact20-01			
Lab Sample ID: 1225959003	<u>Parameter</u>	Result	<u>Units</u>
Metals by ICP/MS	Calcium	21000	ug/L
	Hardness as CaCO3	62.5	mg/L
	Magnesium	2420	ug/L
Waters Department	Total Nitrate/Nitrite-N	0.323	mg/L
Client Sample ID: Cam 6			
Lab Sample ID: 1225959004	Parameter	Result	Units
Metals by ICP/MS	Calcium	24900	ug/L
metals by for Allo	Hardness as CaCO3	76.4	mg/L
	Magnesium	3420	ug/L
Waters Department	Total Nitrate/Nitrite-N	0.468	mg/L
·			
Client Sample ID: Che 3	_		
Lab Sample ID: 1225959005	<u>Parameter</u>	Result	<u>Units</u>
Dissolved Metals by ICP/MS	Barium	22.2	ug/L
	Calcium	40500	ug/L
	Magnesium	7760	ug/L
	Manganese	6.24	ug/L
	Potassium	1290	ug/L
	Silicon	6110	ug/L
	Sodium	12500	ug/L
	Zinc	46.0	ug/L
Waters Department	TOC Average, Dissolved	4.23	mg/L

Print Date: 10/31/2022 3:48:31PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: Che 33			
Lab Sample ID: 1225959006	Parameter	Result	Units
Dissolved Metals by ICP/MS	Aluminum	24.6	ug/L
•	Barium	7.29	ug/L
	Calcium	22300	ug/L
	Magnesium	3640	ug/L
	Manganese	2.01	ug/L
	Nickel	3.75	ug/L
	Potassium	552	ug/L
	Silicon	5800	ug/L
	Sodium	1960	ug/L
	Zinc	40.3	ug/L
Waters Department	TOC Average, Dissolved	4.12	mg/L
Client Sample ID: AnchBact20-01			
Lab Sample ID: 1225959007	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Dissolved Metals by ICP/MS	Barium	11.3	ug/L
•	Calcium	20300	ug/L
	Magnesium	2380	ug/L
	Manganese	2.83	ug/L
	Silicon	3500	ug/L
	Sodium	1450	ug/L
	Zinc	37.5	ug/L
Waters Department	TOC Average, Dissolved	1.39	mg/L
Client Sample ID: Cam 6			
Lab Sample ID: 1225959008	Parameter	<u>Result</u>	Units
Dissolved Metals by ICP/MS	Barium	14.1	ug/L
	Calcium	24700	ug/L
	Magnesium	3400	ug/L
	Manganese	14.3	ug/L
	Potassium	505	ug/L
	Silicon	3810	ug/L
	Sodium	4250	ug/L
	Zinc	37.8	ug/L
Waters Department	TOC Average, Dissolved	2.21	mg/L

Print Date: 10/31/2022 3:48:31PM

SGS North America Inc.

Client Sample ID: **Che 3**Client Project ID: **WHADA**Lab Sample ID: 1225959001
Lab Project ID: 1225959

Collection Date: 09/30/22 10:15 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	40600	500	150	ug/L	1		10/13/22 16:01
Magnesium	7540	50.0	15.0	ug/L	1		10/13/22 16:01

Batch Information

Analytical Batch: MMS11717 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/13/22 16:01 Container ID: 1225959001-B Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/05/22 09:57 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	132	5.00	5.00	mg/L	1		10/13/22 16:01

Batch Information

Analytical Batch: MMS11717 Analytical Method: SM21 2340B

Analyst: HGS

Analytical Date/Time: 10/13/22 16:01 Container ID: 1225959001-B Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/05/22 09:57 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: **Che 3**Client Project ID: **WHADA**Lab Sample ID: 1225959001
Lab Project ID: 1225959

Collection Date: 09/30/22 10:15 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Nitrate/Nitrite-N	0.814	0.200	0.0500	mg/L	2		10/11/22 12:55

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 10/11/22 12:55 Container ID: 1225959001-C

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Phosphorus	0.0400 U	0.0400	0.0120	mg/L	1		10/06/22 12:06

Batch Information

Analytical Batch: WDA5353 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 10/06/22 12:06 Container ID: 1225959001-C Prep Batch: WXX14500
Prep Method: SM21 4500P-B,E
Prep Date/Time: 10/06/22 10:08
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Kjeldahl Nitrogen	1.00 U	1.00	0.310	mg/L	1		10/10/22 18:38

Batch Information

Analytical Batch: WDA5356 Analytical Method: SM23 4500-N D

Analyst: IGK

Analytical Date/Time: 10/10/22 18:38 Container ID: 1225959001-C Prep Batch: WXX14507 Prep Method: METHOD Prep Date/Time: 10/10/22 18:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Client Sample ID: **Che 33**Client Project ID: **WHADA**Lab Sample ID: 1225959002
Lab Project ID: 1225959

Collection Date: 09/30/22 09:15 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	21900	500	150	ug/L	1		10/13/22 16:04
Magnesium	3500	50.0	15.0	ug/L	1		10/13/22 16:04

Batch Information

Analytical Batch: MMS11717 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/13/22 16:04 Container ID: 1225959002-B Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/05/22 09:57 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	69.1	5.00	5.00	mg/L	1		10/13/22 16:04

Batch Information

Analytical Batch: MMS11717 Analytical Method: SM21 2340B

Analyst: HGS

Analytical Date/Time: 10/13/22 16:04 Container ID: 1225959002-B Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/05/22 09:57 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: **Che 33**Client Project ID: **WHADA**Lab Sample ID: 1225959002
Lab Project ID: 1225959

Collection Date: 09/30/22 09:15 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Nitrate/Nitrite-N	0.397	0.200	0.0500	mg/L	2		10/11/22 12:57

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 10/11/22 12:57 Container ID: 1225959002-C

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Phosphorus	0.0400 U	0.0400	0.0120	mg/L	1		10/06/22 12:07

Batch Information

Analytical Batch: WDA5353 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 10/06/22 12:07 Container ID: 1225959002-C Prep Batch: WXX14500
Prep Method: SM21 4500P-B,E
Prep Date/Time: 10/06/22 10:08
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Kjeldahl Nitrogen	1.00 U	1.00	0.310	mg/L	1		10/10/22 18:40

Batch Information

Analytical Batch: WDA5356 Analytical Method: SM23 4500-N D

Analyst: IGK

Analytical Date/Time: 10/10/22 18:40 Container ID: 1225959002-C

Prep Batch: WXX14507 Prep Method: METHOD Prep Date/Time: 10/10/22 18:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Client Sample ID: AnchBact20-01 Client Project ID: WHADA Lab Sample ID: 1225959003 Lab Project ID: 1225959 Collection Date: 09/30/22 09:50 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	21000	500	150	ug/L	1		10/13/22 16:06
Magnesium	2420	50.0	15.0	ug/L	1		10/13/22 16:06

Batch Information

Analytical Batch: MMS11717 Analytical Method: EP200.8

Analyst: HGS
Analytical Date/Tim

Analytical Date/Time: 10/13/22 16:06 Container ID: 1225959003-B Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/05/22 09:57 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	62.5	5.00	5.00	mg/L	1		10/13/22 16:06

Batch Information

Analytical Batch: MMS11717 Analytical Method: SM21 2340B

Analyst: HGS

Analytical Date/Time: 10/13/22 16:06 Container ID: 1225959003-B Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/05/22 09:57 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: AnchBact20-01 Client Project ID: WHADA Lab Sample ID: 1225959003 Lab Project ID: 1225959 Collection Date: 09/30/22 09:50 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Nitrate/Nitrite-N	0.323	0.200	0.0500	mg/L	2		10/11/22 12:59

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 10/11/22 12:59 Container ID: 1225959003-C

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Phosphorus	0.0400 U	0.0400	0.0120	mg/L	1		10/06/22 12:08

Batch Information

Analytical Batch: WDA5353 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 10/06/22 12:08 Container ID: 1225959003-C Prep Batch: WXX14500
Prep Method: SM21 4500P-B,E
Prep Date/Time: 10/06/22 10:08
Prep Initial Wt./Vol.: 25 mL
Prep Extract Vol: 25 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Kjeldahl Nitrogen	1.00 U	1.00	0.310	mg/L	1		10/10/22 18:41

Batch Information

Analytical Batch: WDA5356 Analytical Method: SM23 4500-N D

Analyst: IGK

Analytical Date/Time: 10/10/22 18:41 Container ID: 1225959003-C

Prep Batch: WXX14507 Prep Method: METHOD Prep Date/Time: 10/10/22 18:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Client Sample ID: **Cam 6**Client Project ID: **WHADA**Lab Sample ID: 1225959004
Lab Project ID: 1225959

Collection Date: 09/30/22 10:50 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Calcium	24900	500	150	ug/L	1		10/13/22 16:09
Magnesium	3420	50.0	15.0	ug/L	1		10/13/22 16:09

Batch Information

Analytical Batch: MMS11717 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/13/22 16:09 Container ID: 1225959004-B Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/05/22 09:57 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Hardness as CaCO3	76.4	5.00	5.00	mg/L	1		10/13/22 16:09

Batch Information

Analytical Batch: MMS11717 Analytical Method: SM21 2340B

Analyst: HGS

Analytical Date/Time: 10/13/22 16:09 Container ID: 1225959004-B Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/05/22 09:57 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: **Cam 6**Client Project ID: **WHADA**Lab Sample ID: 1225959004
Lab Project ID: 1225959

Collection Date: 09/30/22 10:50 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Nitrate/Nitrite-N	0.468	0.200	0.0500	mg/L	2		10/11/22 13:00

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F

Analyst: EBH

Analytical Date/Time: 10/11/22 13:00 Container ID: 1225959004-C

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Phosphorus	0.0400 U	0.0400	0.0120	mg/L	1		10/06/22 12:09

Batch Information

Analytical Batch: WDA5353 Analytical Method: SM21 4500P-B,E

Analyst: MEB

Analytical Date/Time: 10/06/22 12:09 Container ID: 1225959004-C Prep Batch: WXX14500 Prep Method: SM21 4500P-B,E Prep Date/Time: 10/06/22 10:08 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Kjeldahl Nitrogen	1.00 U	1.00	0.310	mg/L	1		10/10/22 18:45

Batch Information

Analytical Batch: WDA5356 Analytical Method: SM23 4500-N D

Analyst: IGK

Analytical Date/Time: 10/10/22 18:45 Container ID: 1225959004-C Prep Batch: WXX14507 Prep Method: METHOD Prep Date/Time: 10/10/22 18:00 Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Client Sample ID: **Che 3**Client Project ID: **WHADA**Lab Sample ID: 1225959005
Lab Project ID: 1225959

Collection Date: 09/30/22 10:15 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aluminum	20.0 U	20.0	6.20	ug/L	1		10/11/22 20:57
Antimony	1.00 U	1.00	0.310	ug/L	1		10/11/22 20:57
Arsenic	5.00 U	5.00	1.50	ug/L	1		10/11/22 20:57
Barium	22.2	3.00	0.940	ug/L	1		10/11/22 20:57
Beryllium	0.400 U	0.400	0.130	ug/L	1		10/11/22 20:57
Cadmium	0.500 U	0.500	0.150	ug/L	1		10/11/22 20:57
Calcium	40500	500	150	ug/L	1		10/11/22 20:57
Chromium	5.00 U	5.00	2.50	ug/L	1		10/11/22 20:57
Cobalt	4.00 U	4.00	1.20	ug/L	1		10/11/22 20:57
Copper	3.00 U	3.00	1.00	ug/L	1		10/11/22 20:57
Iron	250 U	250	78.0	ug/L	1		10/11/22 20:57
Lead	2.00 U	2.00	0.500	ug/L	1		10/11/22 20:57
Magnesium	7760	50.0	15.0	ug/L	1		10/11/22 20:57
Manganese	6.24	1.00	0.350	ug/L	1		10/11/22 20:57
Molybdenum	2.00 U	2.00	0.620	ug/L	1		10/11/22 20:57
Nickel	2.00 U	2.00	0.620	ug/L	1		10/11/22 20:57
Phosphorus	200 U	200	62.0	ug/L	1		10/11/22 20:57
Potassium	1290	500	150	ug/L	1		10/11/22 20:57
Selenium	5.00 U	5.00	1.50	ug/L	1		10/11/22 20:57
Silicon	6110	1000	310	ug/L	1		10/11/22 20:57
Silver	1.00 U	1.00	0.310	ug/L	1		10/11/22 20:57
Sodium	12500	500	150	ug/L	1		10/11/22 20:57
Thallium	1.00 U	1.00	0.310	ug/L	1		10/11/22 20:57
Tin	1.00 U	1.00	0.310	ug/L	1		10/11/22 20:57
Titanium	6.25 U	6.25	3.13	ug/L	1		10/11/22 20:57
Vanadium	20.0 U	20.0	6.20	ug/L	1		10/11/22 20:57
Zinc	46.0	10.0	3.10	ug/L	1		10/27/22 13:11

Client Sample ID: **Che 3**Client Project ID: **WHADA**Lab Sample ID: 1225959005
Lab Project ID: 1225959

Collection Date: 09/30/22 10:15 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

Batch Information

Analytical Batch: MMS11730 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/27/22 13:11 Container ID: 1225959005-B

Analytical Batch: MMS11714 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/11/22 20:57 Container ID: 1225959005-B Prep Batch: MXX35571 Prep Method: E200.2

Prep Date/Time: 10/19/22 15:00 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35532 Prep Method: E200.2

Prep Date/Time: 10/05/22 10:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: **Che 3**Client Project ID: **WHADA**Lab Sample ID: 1225959005
Lab Project ID: 1225959

Collection Date: 09/30/22 10:15 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF <u>Limits</u> Date Analyzed 4.23 TOC Average, Dissolved 1.00 0.400 mg/L 1 10/13/22 19:50

Batch Information

Analytical Batch: WTC3244 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 10/13/22 19:50 Container ID: 1225959005-D

Client Sample ID: **Che 33**Client Project ID: **WHADA**Lab Sample ID: 1225959006
Lab Project ID: 1225959

Collection Date: 09/30/22 09:15 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aluminum	24.6	20.0	6.20	ug/L	1		10/11/22 21:05
Antimony	1.00 U	1.00	0.310	ug/L	1		10/11/22 21:05
Arsenic	5.00 U	5.00	1.50	ug/L	1		10/11/22 21:05
Barium	7.29	3.00	0.940	ug/L	1		10/11/22 21:05
Beryllium	0.400 U	0.400	0.130	ug/L	1		10/11/22 21:05
Cadmium	0.500 U	0.500	0.150	ug/L	1		10/11/22 21:05
Calcium	22300	500	150	ug/L	1		10/11/22 21:05
Chromium	5.00 U	5.00	2.50	ug/L	1		10/11/22 21:05
Cobalt	4.00 U	4.00	1.20	ug/L	1		10/11/22 21:05
Copper	3.00 U	3.00	1.00	ug/L	1		10/11/22 21:05
Iron	250 U	250	78.0	ug/L	1		10/11/22 21:05
Lead	2.00 U	2.00	0.500	ug/L	1		10/11/22 21:05
Magnesium	3640	50.0	15.0	ug/L	1		10/11/22 21:05
Manganese	2.01	1.00	0.350	ug/L	1		10/11/22 21:05
Molybdenum	2.00 U	2.00	0.620	ug/L	1		10/11/22 21:05
Nickel	3.75	2.00	0.620	ug/L	1		10/11/22 21:05
Phosphorus	200 U	200	62.0	ug/L	1		10/11/22 21:05
Potassium	552	500	150	ug/L	1		10/11/22 21:05
Selenium	5.00 U	5.00	1.50	ug/L	1		10/11/22 21:05
Silicon	5800	1000	310	ug/L	1		10/11/22 21:05
Silver	1.00 U	1.00	0.310	ug/L	1		10/11/22 21:05
Sodium	1960	500	150	ug/L	1		10/11/22 21:05
Thallium	1.00 U	1.00	0.310	ug/L	1		10/11/22 21:05
Tin	1.00 U	1.00	0.310	ug/L	1		10/11/22 21:05
Titanium	6.25 U	6.25	3.13	ug/L	1		10/11/22 21:05
Vanadium	20.0 U	20.0	6.20	ug/L	1		10/11/22 21:05
Zinc	40.3	10.0	3.10	ug/L	1		10/27/22 13:14

Client Sample ID: **Che 33**Client Project ID: **WHADA**Lab Sample ID: 1225959006
Lab Project ID: 1225959

Collection Date: 09/30/22 09:15 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

Batch Information

Analytical Batch: MMS11730 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/27/22 13:14 Container ID: 1225959006-B

Analytical Batch: MMS11714 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/11/22 21:05 Container ID: 1225959006-B Prep Batch: MXX35571 Prep Method: E200.2

Prep Date/Time: 10/19/22 15:00 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35532 Prep Method: E200.2

Prep Date/Time: 10/05/22 10:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: **Che 33**Client Project ID: **WHADA**Lab Sample ID: 1225959006
Lab Project ID: 1225959

Collection Date: 09/30/22 09:15 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF <u>Limits</u> Date Analyzed TOC Average, Dissolved 4.12 1.00 0.400 mg/L 1 10/13/22 20:05

Batch Information

Analytical Batch: WTC3244 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 10/13/22 20:05 Container ID: 1225959006-D

Client Sample ID: **AnchBact20-01**Client Project ID: **WHADA**Lab Sample ID: 1225959007
Lab Project ID: 1225959

Collection Date: 09/30/22 09:50 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aluminum	20.0 U	20.0	6.20	ug/L	1		10/11/22 21:08
Antimony	1.00 U	1.00	0.310	ug/L	1		10/11/22 21:08
Arsenic	5.00 U	5.00	1.50	ug/L	1		10/11/22 21:08
Barium	11.3	3.00	0.940	ug/L	1		10/11/22 21:08
Beryllium	0.400 U	0.400	0.130	ug/L	1		10/11/22 21:08
Cadmium	0.500 U	0.500	0.150	ug/L	1		10/11/22 21:08
Calcium	20300	500	150	ug/L	1		10/11/22 21:08
Chromium	5.00 U	5.00	2.50	ug/L	1		10/11/22 21:08
Cobalt	4.00 U	4.00	1.20	ug/L	1		10/11/22 21:08
Copper	3.00 U	3.00	1.00	ug/L	1		10/11/22 21:08
Iron	250 U	250	78.0	ug/L	1		10/11/22 21:08
Lead	2.00 U	2.00	0.500	ug/L	1		10/11/22 21:08
Magnesium	2380	50.0	15.0	ug/L	1		10/11/22 21:08
Manganese	2.83	1.00	0.350	ug/L	1		10/11/22 21:08
Molybdenum	2.00 U	2.00	0.620	ug/L	1		10/11/22 21:08
Nickel	2.00 U	2.00	0.620	ug/L	1		10/11/22 21:08
Phosphorus	200 U	200	62.0	ug/L	1		10/11/22 21:08
Potassium	500 U	500	150	ug/L	1		10/11/22 21:08
Selenium	5.00 U	5.00	1.50	ug/L	1		10/11/22 21:08
Silicon	3500	1000	310	ug/L	1		10/11/22 21:08
Silver	1.00 U	1.00	0.310	ug/L	1		10/11/22 21:08
Sodium	1450	500	150	ug/L	1		10/11/22 21:08
Thallium	1.00 U	1.00	0.310	ug/L	1		10/11/22 21:08
Tin	1.00 U	1.00	0.310	ug/L	1		10/11/22 21:08
Titanium	6.25 U	6.25	3.13	ug/L	1		10/11/22 21:08
Vanadium	20.0 U	20.0	6.20	ug/L	1		10/11/22 21:08
Zinc	37.5	10.0	3.10	ug/L	1		10/27/22 13:16

Client Sample ID: AnchBact20-01 Client Project ID: WHADA Lab Sample ID: 1225959007 Lab Project ID: 1225959 Collection Date: 09/30/22 09:50 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

Batch Information

Analytical Batch: MMS11730 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/27/22 13:16 Container ID: 1225959007-B

Analytical Batch: MMS11714 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/11/22 21:08 Container ID: 1225959007-B Prep Batch: MXX35571 Prep Method: E200.2

Prep Date/Time: 10/19/22 15:00 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35532 Prep Method: E200.2

Prep Date/Time: 10/05/22 10:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: AnchBact20-01 Client Project ID: WHADA Lab Sample ID: 1225959007 Lab Project ID: 1225959 Collection Date: 09/30/22 09:50 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
TOC Average, Dissolved	1.39	1.00	0.400	mg/L	1		10/13/22 20:19

Batch Information

Analytical Batch: WTC3244 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 10/13/22 20:19 Container ID: 1225959007-D

Client Sample ID: **Cam 6**Client Project ID: **WHADA**Lab Sample ID: 1225959008
Lab Project ID: 1225959

Collection Date: 09/30/22 10:50 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Aluminum	20.0 U	20.0	6.20	ug/L	1		10/11/22 21:10
Antimony	1.00 U	1.00	0.310	ug/L	1		10/11/22 21:10
Arsenic	5.00 U	5.00	1.50	ug/L	1		10/11/22 21:10
Barium	14.1	3.00	0.940	ug/L	1		10/11/22 21:10
Beryllium	0.400 U	0.400	0.130	ug/L	1		10/11/22 21:10
Cadmium	0.500 U	0.500	0.150	ug/L	1		10/11/22 21:10
Calcium	24700	500	150	ug/L	1		10/11/22 21:10
Chromium	5.00 U	5.00	2.50	ug/L	1		10/11/22 21:10
Cobalt	4.00 U	4.00	1.20	ug/L	1		10/11/22 21:10
Copper	3.00 U	3.00	1.00	ug/L	1		10/11/22 21:10
Iron	250 U	250	78.0	ug/L	1		10/11/22 21:10
Lead	2.00 U	2.00	0.500	ug/L	1		10/11/22 21:10
Magnesium	3400	50.0	15.0	ug/L	1		10/11/22 21:10
Manganese	14.3	1.00	0.350	ug/L	1		10/11/22 21:10
Molybdenum	2.00 U	2.00	0.620	ug/L	1		10/11/22 21:10
Nickel	2.00 U	2.00	0.620	ug/L	1		10/11/22 21:10
Phosphorus	200 U	200	62.0	ug/L	1		10/11/22 21:10
Potassium	505	500	150	ug/L	1		10/11/22 21:10
Selenium	5.00 U	5.00	1.50	ug/L	1		10/11/22 21:10
Silicon	3810	1000	310	ug/L	1		10/11/22 21:10
Silver	1.00 U	1.00	0.310	ug/L	1		10/11/22 21:10
Sodium	4250	500	150	ug/L	1		10/11/22 21:10
Thallium	1.00 U	1.00	0.310	ug/L	1		10/11/22 21:10
Tin	1.00 U	1.00	0.310	ug/L	1		10/11/22 21:10
Titanium	6.25 U	6.25	3.13	ug/L	1		10/11/22 21:10
Vanadium	20.0 U	20.0	6.20	ug/L	1		10/11/22 21:10
Zinc	37.8	10.0	3.10	ug/L	1		10/27/22 13:19
				-			

Client Sample ID: **Cam 6**Client Project ID: **WHADA**Lab Sample ID: 1225959008
Lab Project ID: 1225959

Collection Date: 09/30/22 10:50 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Dissolved Metals by ICP/MS

Batch Information

Analytical Batch: MMS11730 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/27/22 13:19 Container ID: 1225959008-B

Analytical Batch: MMS11714 Analytical Method: EP200.8

Analyst: HGS

Analytical Date/Time: 10/11/22 21:10 Container ID: 1225959008-B Prep Batch: MXX35571 Prep Method: E200.2

Prep Date/Time: 10/19/22 15:00 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Prep Batch: MXX35532 Prep Method: E200.2

Prep Date/Time: 10/05/22 10:42 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Client Sample ID: **Cam 6**Client Project ID: **WHADA**Lab Sample ID: 1225959008
Lab Project ID: 1225959

Collection Date: 09/30/22 10:50 Received Date: 09/30/22 11:15 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
TOC Average, Dissolved	2.21	1.00	0.400	mg/L	1		10/13/22 21:02

Batch Information

Analytical Batch: WTC3244 Analytical Method: SM 5310B

Analyst: EBH

Analytical Date/Time: 10/13/22 21:02 Container ID: 1225959008-D

Method Blank

Blank ID: MB for HBN 1845075 [MXX/35532]

Blank Lab ID: 1689762

QC for Samples:

1225959005, 1225959006, 1225959007, 1225959008

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

Parameter	Results	LOQ/CL	DL	Units
Aluminum	10.0U	20.0	6.20	ug/L
Antimony	0.500U	1.00	0.310	ug/L
Arsenic	2.50U	5.00	1.50	ug/L
Barium	1.50U	3.00	0.940	ug/L
Beryllium	0.200U	0.400	0.130	ug/L
Cadmium	0.250U	0.500	0.150	ug/L
Calcium	250U	500	150	ug/L
Chromium	2.50U	5.00	2.50	ug/L
Cobalt	2.00U	4.00	1.20	ug/L
Copper	1.50U	3.00	1.00	ug/L
Iron	125U	250	78.0	ug/L
Lead	1.00U	2.00	0.500	ug/L
Magnesium	25.0U	50.0	15.0	ug/L
Manganese	0.500U	1.00	0.350	ug/L
Molybdenum	1.00U	2.00	0.620	ug/L
Nickel	1.00U	2.00	0.620	ug/L
Phosphorus	100U	200	62.0	ug/L
Potassium	250U	500	150	ug/L
Selenium	2.50U	5.00	1.50	ug/L
Silicon	500U	1000	310	ug/L
Silver	0.500U	1.00	0.310	ug/L
Sodium	250U	500	150	ug/L
Thallium	0.500U	1.00	0.310	ug/L
Tin	0.500U	1.00	0.310	ug/L
Titanium	12.5U	25.0	7.75	ug/L
Vanadium	10.0U	20.0	6.20	ug/L

Batch Information

Analytical Batch: MMS11714 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/11/2022 8:01:00PM

Prep Batch: MXX35532 Prep Method: E200.2

Prep Date/Time: 10/5/2022 10:42:21AM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225959 [MXX35532]

Blank Spike Lab ID: 1689763 Date Analyzed: 10/11/2022 20:04

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225959005, 1225959006, 1225959007, 1225959008

Results by EP200.8

Parameter Spike Result Resc (%) CL Aluminum 1000 998 100 (85-115) Antimony 1000 1040 104 (85-115) Arsenic 1000 987 99 (85-115) Barium 1000 996 100 (85-115) Beryllium 100 103 103 (85-115) Cadmium 100 102 102 (85-115) Calcium 1000 1010 101 (85-115) Chromium 400 401 100 (85-115) Chromium 400 401 100 (85-115) Copper 1000 1010 101 (85-115) Lead 1000 1010 101 (85-115) Magnesium 1000 1040 104 (85-115) Maloybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Pos			Blank Spike	e (ug/L)	
Antimony 1000 1040 104 (85-115) Arsenic 1000 987 99 (85-115) Barium 1000 996 100 (85-115) Beryllium 100 103 103 (85-115) Cadmium 100 102 102 (85-115) Calcium 10000 10100 101 (85-115) Chromium 400 401 100 (85-115) Chromium 400 401 100 (85-115) Cobalt 500 500 100 (85-115) Copper 1000 1010 101 (85-115) Iron 5000 5280 106 (85-115) Lead 1000 1010 101 (85-115) Magnesium 1000 1040 104 (85-115) Malagnese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Potassium </th <th><u>Parameter</u></th> <th><u>Spike</u></th> <th>Result</th> <th>Rec (%)</th> <th><u>CL</u></th>	<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
Arsenic 1000 987 99 (85-115) Barium 1000 996 100 (85-115) Beryllium 100 103 103 (85-115) Cadmium 100 102 102 (85-115) Calcium 10000 1010 101 (85-115) Chromium 400 401 100 (85-115) Cobalt 500 500 100 (85-115) Copper 1000 1010 101 (85-115) Iron 5000 5280 106 (85-115) Lead 1000 1010 101 (85-115) Magnesium 10000 1040 104 (85-115) Manganese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Potassium 1000 1020 (85-115) Selenium 1000<	Aluminum	1000	998	100	(85-115)
Barium 1000 996 100 (85-115) Beryllium 100 103 103 (85-115) Cadmium 100 102 102 (85-115) Calcium 10000 10100 101 (85-115) Chromium 400 401 100 (85-115) Cobalt 500 500 100 (85-115) Copper 1000 1010 101 (85-115) Iron 5000 5280 106 (85-115) Lead 1000 1010 101 (85-115) Magnesium 1000 104 (85-115) Manganese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Potassium 1000 1020 102 (85-115) Selenium 1000 1050 105 (85-115) Silicon 100<	Antimony	1000	1040	104	(85-115)
Beryllium 100 103 103 (85-115) Cadmium 100 102 102 (85-115) Calcium 10000 10100 101 (85-115) Chromium 400 401 100 (85-115) Cobalt 500 500 100 (85-115) Copper 1000 1010 101 (85-115) Iron 5000 5280 106 (85-115) Lead 1000 1010 101 (85-115) Magnesium 1000 10400 104 (85-115) Manganese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Photassium 1000 10200 102 (85-115) Selenium 1000 10200 102 (85-115) Silicon 1000 10500 105 (85-115)	Arsenic	1000	987	99	(85-115)
Cadmium 100 102 102 (85-115) Calcium 10000 10100 101 (85-115) Chromium 400 401 100 (85-115) Cobalt 500 500 100 (85-115) Copper 1000 1010 101 (85-115) Iron 5000 5280 106 (85-115) Lead 1000 1010 101 (85-115) Magnesium 10000 10400 104 (85-115) Manganese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Phosphorus 500 511 102 (85-115) Potassium 10000 10200 102 (85-115) Selenium 10000 10500 105 (85-115) Silicon 1000 10500 105 (85-115) <	Barium	1000	996	100	(85-115)
Calcium 10000 10100 101 (85-115) Chromium 400 401 100 (85-115) Cobalt 500 500 100 (85-115) Copper 1000 1010 101 (85-115) Iron 5000 5280 106 (85-115) Lead 1000 1010 101 (85-115) Magnesium 10000 10400 104 (85-115) Manganese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Phosphorus 500 511 102 (85-115) Potassium 1000 1020 102 (85-115) Selenium 1000 1020 102 (85-115) Silicon 1000 1050 105 (85-115) Sodium 1000 1040 (85-115) Thallium	Beryllium	100	103	103	(85-115)
Chromium 400 401 100 (85-115) Cobalt 500 500 100 (85-115) Copper 1000 1010 101 (85-115) Iron 5000 5280 106 (85-115) Lead 1000 1010 101 (85-115) Magnesium 10000 10400 104 (85-115) Manganese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Phosphorus 500 511 102 (85-115) Potassium 1000 10200 102 (85-115) Selenium 1000 10200 102 (85-115) Silicon 1000 10500 105 (85-115) Siliver 100 10400 104 (85-115) Sodium 1000 102 (85-115) Thallium	Cadmium	100	102	102	(85-115)
Cobalt 500 500 100 (85-115) Copper 1000 1010 101 (85-115) Iron 5000 5280 106 (85-115) Lead 1000 1010 101 (85-115) Magnesium 10000 10400 104 (85-115) Manganese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Phosphorus 500 511 102 (85-115) Potassium 1000 10200 102 (85-115) Selenium 1000 1020 102 (85-115) Silicon 1000 1050 105 (85-115) Silver 100 100 100 (85-115) Sodium 1000 1040 104 (85-115) Thallium 10 103 103 (85-115) Titani	Calcium	10000	10100	101	(85-115)
Copper 1000 1010 101 (85-115) Iron 5000 5280 106 (85-115) Lead 1000 1010 101 (85-115) Magnesium 10000 10400 104 (85-115) Manganese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Phosphorus 500 511 102 (85-115) Potassium 1000 10200 102 (85-115) Selenium 1000 10500 105 (85-115) Silicon 1000 10500 105 (85-115) Silver 100 100 100 (85-115) Sodium 1000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Tin 100 103 103 (85-115) Titan	Chromium	400	401	100	(85-115)
Iron 5000 5280 106 (85-115) Lead 1000 1010 101 (85-115) Magnesium 10000 10400 104 (85-115) Manganese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Phosphorus 500 511 102 (85-115) Potassium 10000 10200 102 (85-115) Selenium 1000 1020 102 (85-115) Silicon 10000 10500 105 (85-115) Siliver 100 100 100 (85-115) Sodium 10000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Titanium 100 103 103 (85-115)	Cobalt	500	500	100	(85-115)
Lead 1000 1010 101 (85-115) Magnesium 10000 10400 104 (85-115) Manganese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Phosphorus 500 511 102 (85-115) Potassium 10000 10200 102 (85-115) Selenium 1000 1020 102 (85-115) Silicon 1000 10500 105 (85-115) Silver 100 100 100 104 (85-115) Sodium 1000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Tin 100 103 103 103 (85-115) Titanium 100 103 103 (85-115)	Copper	1000	1010	101	(85-115)
Magnesium 10000 10400 104 (85-115) Manganese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Phosphorus 500 511 102 (85-115) Potassium 10000 10200 102 (85-115) Selenium 1000 1020 102 (85-115) Silicon 10000 10500 105 (85-115) Silver 100 100 100 (85-115) Sodium 10000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Tin 100 103 103 (85-115) Titanium 100 103 103 (85-115)	Iron	5000	5280	106	(85-115)
Manganese 500 498 100 (85-115) Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Phosphorus 500 511 102 (85-115) Potassium 10000 10200 102 (85-115) Selenium 1000 1020 102 (85-115) Silicon 1000 10500 105 (85-115) Silver 100 100 100 (85-115) Sodium 10000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Tin 100 103 103 (85-115) Titanium 100 103 103 (85-115)	Lead	1000	1010	101	(85-115)
Molybdenum 400 391 98 (85-115) Nickel 1000 1010 101 (85-115) Phosphorus 500 511 102 (85-115) Potassium 10000 10200 102 (85-115) Selenium 1000 1020 102 (85-115) Silicon 10000 10500 105 (85-115) Silver 100 100 100 (85-115) Sodium 1000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Tin 100 103 103 (85-115) Titanium 100 103 103 (85-115)	Magnesium	10000	10400	104	(85-115)
Nickel 1000 1010 101 (85-115) Phosphorus 500 511 102 (85-115) Potassium 10000 10200 102 (85-115) Selenium 1000 1020 102 (85-115) Silicon 10000 10500 105 (85-115) Silver 100 100 100 (85-115) Sodium 10000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Tin 100 103 103 (85-115) Titanium 100 103 103 (85-115)	Manganese	500	498	100	(85-115)
Phosphorus 500 511 102 (85-115) Potassium 10000 10200 102 (85-115) Selenium 1000 1020 102 (85-115) Silicon 10000 10500 105 (85-115) Silver 100 100 100 (85-115) Sodium 10000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Tin 100 103 103 (85-115) Titanium 100 103 103 (85-115)	Molybdenum	400	391	98	(85-115)
Potassium 10000 10200 102 (85-115) Selenium 1000 1020 102 (85-115) Silicon 10000 10500 105 (85-115) Silver 100 100 100 (85-115) Sodium 10000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Tin 100 103 103 (85-115) Titanium 100 103 103 (85-115)	Nickel	1000	1010	101	(85-115)
Selenium 1000 1020 102 (85-115) Silicon 10000 10500 105 (85-115) Silver 100 100 100 (85-115) Sodium 10000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Tin 100 103 103 (85-115) Titanium 100 103 103 (85-115)	Phosphorus	500	511	102	(85-115)
Silicon 10000 10500 105 (85-115) Silver 100 100 100 (85-115) Sodium 10000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Tin 100 103 103 (85-115) Titanium 100 103 103 (85-115)	Potassium	10000	10200	102	(85-115)
Silver 100 100 100 (85-115) Sodium 10000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Tin 100 103 103 (85-115) Titanium 100 103 103 (85-115)	Selenium	1000	1020	102	(85-115)
Sodium 10000 10400 104 (85-115) Thallium 10 10.2 102 (85-115) Tin 100 103 103 (85-115) Titanium 100 103 103 (85-115)	Silicon	10000	10500	105	(85-115)
Thallium 10 10.2 102 (85-115) Tin 100 103 103 (85-115) Titanium 100 103 103 (85-115)	Silver	100	100	100	(85-115)
Tin 100 103 103 (85-115) Titanium 100 103 103 (85-115)	Sodium	10000	10400	104	(85-115)
Titanium 100 103 103 (85-115)	Thallium	10	10.2	102	(85-115)
	Tin	100	103	103	(85-115)
Vanadium 200 197 98 (85-115)	Titanium	100	103	103	(85-115)
	Vanadium	200	197	98	(85-115)

Batch Information

Analytical Batch: MMS11714 Analytical Method: EP200.8

Instrument: P7 Agilent 7800

Analyst: HGS

Prep Batch: MXX35532 Prep Method: E200.2

Prep Date/Time: 10/05/2022 10:42

Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1689749 MS Sample ID: 1689766 MS

MSD Sample ID:

Analysis Date: 10/11/2022 20:14 Analysis Date: 10/11/2022 20:17

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225959005, 1225959006, 1225959007, 1225959008

Results by EP200.8

		Matrix Spike (ug/L)		Spike Duplicate (ug/L)						
<u>Parameter</u>	Sample	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Aluminum	10.0U	1000	993	99				70-130		
Antimony	1.47	1000	1040	103				70-130		
Arsenic	2.50U	1000	986	99				70-130		
Barium	8.76	1000	992	98				70-130		
Beryllium	0.134J	100	103	103				70-130		
Cadmium	0.250U	100	102	102				70-130		
Calcium	8230	10000	18100	99				70-130		
Chromium	2.50U	400	397	99				70-130		
Cobalt	2.00U	500	495	99				70-130		
Copper	3.33	1000	1010	100				70-130		
Iron	125U	5000	5160	103				70-130		
Lead	0.794J	1000	1020	102				70-130		
Magnesium	1490	10000	11700	102				70-130		
Manganese	12.6	500	505	99				70-130		
Molybdenum	3.11	400	387	96				70-130		
Nickel	3.93	1000	997	99				70-130		
Phosphorus	100U	500	496	99				70-130		
Potassium	263J	10000	10500	102				70-130		
Selenium	1.54J	1000	1020	102				70-130		
Silicon	784J	10000	11100	103				70-130		
Silver	0.500U	100	99.7	100				70-130		
Sodium	1320	10000	11500	102				70-130		
Thallium	0.500U	10.0	10.3	103				70-130		
Tin	0.500U	100	101	101				70-130		
Titanium	12.5U	100	104	104				70-130		
Vanadium	10.0U	200	196	98				70-130		

Batch Information

Analytical Batch: MMS11714 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/11/2022 8:17:00PM

Prep Batch: MXX35532

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 10/5/2022 10:42:21AM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Print Date: 10/31/2022 3:48:39PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank

Blank ID: MB for HBN 1845076 [MXX/35533]

Blank Lab ID: 1689767

QC for Samples:

1225959001, 1225959002, 1225959003, 1225959004

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Calcium
 250U
 500
 150
 ug/L

 Magnesium
 25.0U
 50.0
 15.0
 ug/L

Batch Information

Analytical Batch: MMS11717 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/13/2022 3:21:00PM

Prep Batch: MXX35533 Prep Method: E200.2

Prep Date/Time: 10/5/2022 9:57:23AM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225959 [MXX35533]

Blank Spike Lab ID: 1689768 Date Analyzed: 10/13/2022 15:24

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225959001, 1225959002, 1225959003, 1225959004

Results by EP200.8

Blank Spike (ug/L)

<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	CL
Calcium	10000	9910	99	(85-115)
Magnesium	10000	10100	101	(85-115)

Batch Information

Analytical Batch: MMS11717
Analytical Method: EP200.8

Instrument: P7 Agilent 7800

Analyst: HGS

Prep Batch: MXX35533
Prep Method: E200.2

Prep Date/Time: 10/05/2022 09:57

Spike Init Wt./Vol.: 10000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Matrix Spike Summary

Original Sample ID: 1689751 MS Sample ID: 1689771 MS

MSD Sample ID:

Analysis Date: 10/13/2022 15:34 Analysis Date: 10/13/2022 15:37

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225959001, 1225959002, 1225959003, 1225959004

Results by EP200.8

Matrix Spike (ug/L) Spike Duplicate (ug/L)

Parameter Sample Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL

 Calcium
 64300
 10000
 73200
 89
 70-130

 Magnesium
 17800
 10000
 27100
 94
 70-130

Batch Information

Analytical Batch: MMS11717 Prep Batch: MXX35533

Analytical Method: EP200.8 Prep Method: DW Digest for Metals on ICP-MS Instrument: P7 Agilent 7800 Prep Date/Time: 10/5/2022 9:57:23AM

Analyst: HGS Prep Initial Wt./Vol.: 20.00mL Analytical Date/Time: 10/13/2022 3:37:00PM Prep Extract Vol: 50.00mL

Print Date: 10/31/2022 3:48:43PM

Method Blank

Blank ID: MB for HBN 1846699 [MXX/35571]

Blank Lab ID: 1692375

QC for Samples:

1225959005, 1225959006, 1225959007, 1225959008

Matrix: Water (Surface, Eff., Ground)

Units

ug/L

Results by EP200.8

 Parameter
 Results
 LOQ/CL
 DL

 Zinc
 6.02J
 10.0
 3.10

Batch Information

Analytical Batch: MMS11732 Analytical Method: EP200.8

Instrument: P7 Agilent 7800

Analyst: HGS

Analytical Date/Time: 10/28/2022 12:56:19PM

Prep Batch: MXX35571 Prep Method: E200.2

Prep Date/Time: 10/19/2022 3:00:38PM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 10/31/2022 3:48:48PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225959 [MXX35571]

Blank Spike Lab ID: 1692376 Date Analyzed: 10/27/2022 12:26

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225959005, 1225959006, 1225959007, 1225959008

Results by EP200.8

Blank Spike (ug/L)

<u>Parameter</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u>

Zinc 1000 991 **99** (85-115)

Batch Information

Analytical Batch: MMS11730 Prep Batch: MXX35571
Analytical Method: EP200.8 Prep Method: E200.2

Instrument: P7 Agilent 7800 Prep Date/Time: 10/19/2022 15:00

Analyst: **HGS** Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/31/2022 3:48:50PM

Matrix Spike Summary

 Original Sample ID: 1692367
 Analysis Date: 10/27/2022 12:36

 MS Sample ID: 1692379 MS
 Analysis Date: 10/27/2022 12:39

MSD Sample ID: Analysis Date:

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225959005, 1225959006, 1225959007, 1225959008

Results by EP200.8

Matrix Spike (ug/L) Spike Duplicate (ug/L)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Zinc 32.2 1000 988 96 70-130

Batch Information

Analytical Batch: MMS11730 Prep Batch: MXX35571

Analytical Method: EP200.8 Prep Method: DW Digest for Metals on ICP-MS Instrument: P7 Agilent 7800 Prep Date/Time: 10/19/2022 3:00:38PM

Analyst: HGS Prep Initial Wt./Vol.: 20.00mL Analytical Date/Time: 10/27/2022 12:39:19PM Prep Extract Vol: 50.00mL

Print Date: 10/31/2022 3:48:51PM

Method Blank

Blank ID: MB for HBN 1845813 (WFI/3009)

Blank Lab ID: 1690929

QC for Samples:

1225959001, 1225959002, 1225959003, 1225959004

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500NO3-F

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Nitrate-N	0.100U	0.200	0.0500	mg/L
Nitrite-N	0.100U	0.200	0.0500	mg/L
Total Nitrate/Nitrite-N	0.100U	0.200	0.0500	mg/L

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 10/11/2022 12:24:06PM

Print Date: 10/31/2022 3:48:53PM

Method Blank

Blank ID: MB for HBN 1845813 (WFI/3009)

Blank Lab ID: 1690936

QC for Samples:

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500NO3-F

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Nitrate-N	0.100U	0.200	0.0500	mg/L
Nitrite-N	0.100U	0.200	0.0500	mg/L
Total Nitrate/Nitrite-N	0.100U	0.200	0.0500	mg/L

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 10/11/2022 11:36:50AM

Print Date: 10/31/2022 3:48:53PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225959 [WFI3009]

Blank Spike Lab ID: 1690931 Date Analyzed: 10/11/2022 12:22

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225959001, 1225959002, 1225959003, 1225959004

Results by SM21 4500NO3-F

Blank Spike (mg/L)						
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>		
Nitrate-N	2.5	2.62	105	(70-130)		
Nitrite-N	2.5	2.49	100	(90-110)		
Total Nitrate/Nitrite-N	5	5.11	102	(90-110)		

Batch Information

Analytical Batch: WFI3009

Analytical Method: **SM21 4500NO3-F** Instrument: **Astoria segmented flow**

Analyst: EBH

Print Date: 10/31/2022 3:48:55PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225959 [WFI3009]

Blank Spike Lab ID: 1690938 Date Analyzed: 10/11/2022 11:35

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

Results by SM21 4500NO3-F

Blank Spike (mg/L)						
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>		
Nitrate-N	2.5	2.32	93	(70-130)		
Nitrite-N	2.5	2.35	94	(90-110)		
Total Nitrate/Nitrite-N	5	4.66	93	(90-110)		

Batch Information

Analytical Batch: WFI3009

Analytical Method: **SM21 4500NO3-F** Instrument: **Astoria segmented flow**

Analyst: **EBH**

Print Date: 10/31/2022 3:48:55PM

Matrix Spike Summary

Original Sample ID: 1690916
MS Sample ID: 1690918 MS
MSD Sample ID: 1690919 MSD

Analysis Date: 10/11/2022 11:43 Analysis Date: 10/11/2022 11:45 Analysis Date: 10/11/2022 11:47 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225959001, 1225959002, 1225959003, 1225959004

Results by SM21 4500NO3-F

		Ma	Matrix Spike (mg/L)			Spike Duplicate (mg/L)				
<u>Parameter</u>	<u>Sample</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Nitrate-N	0.293	2.50	3.26	119	2.50	3.45	126	70-130	5.80	(< 25)
Nitrite-N	0.100U	2.50	2	80 *	2.50	2.15	86 *	90-110	7.10	(< 25)
Total Nitrate/Nitrite-N	0.307	5.00	5.26	99	5.00	5.60	106	90-110	6.30	(< 25)

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 10/11/2022 11:45:36AM

Print Date: 10/31/2022 3:48:57PM

Matrix Spike Summary

 Original Sample ID: 1225971001
 Analysis Date: 10/11/2022 13:13

 MS Sample ID: 1690920 MS
 Analysis Date: 10/11/2022 13:14

 MSD Sample ID: 1690921 MSD
 Analysis Date: 10/11/2022 13:16

Matrix: Drinking Water

QC for Samples: 1225959001, 1225959002, 1225959003, 1225959004

Results by SM21 4500NO3-F

Matrix Spike (mg/L) Spike Duplicate (mg/L) <u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL Total Nitrate/Nitrite-N 5.85 10.0 14.3 84 10.0 15.2 94 90-110 6.40 (< 25)

Batch Information

Analytical Batch: WFI3009

Analytical Method: SM21 4500NO3-F Instrument: Astoria segmented flow

Analyst: EBH

Analytical Date/Time: 10/11/2022 1:14:00PM

Print Date: 10/31/2022 3:48:57PM

Method Blank

Blank ID: MB for HBN 1845141 [WXX/14500]

Blank Lab ID: 1690021

QC for Samples:

1225959001, 1225959002, 1225959003, 1225959004

Matrix: Water (Surface, Eff., Ground)

Results by SM21 4500P-B,E

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Phosphorus
 0.0200U
 0.0400
 0.0120
 mg/L

Batch Information

Analytical Batch: WDA5353 Analytical Method: SM21 4500P-B,E Instrument: Discrete Analyzer 2

Analyst: MEB

Analytical Date/Time: 10/6/2022 11:49:00AM

Prep Batch: WXX14500 Prep Method: SM21 4500P-B,E Prep Date/Time: 10/6/2022 10:08:00AM

Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 10/31/2022 3:49:01PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225959 [WXX14500]

Blank Spike Lab ID: 1690022

Date Analyzed: 10/06/2022 11:50

Spike Duplicate ID: LCSD for HBN 1225959

[WXX14500]

Spike Duplicate Lab ID: 1690023

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225959001, 1225959002, 1225959003, 1225959004

Results by SM21 4500P-B,E

Blank Spike (mg/L) Spike Duplicate (mg/L)

<u>Parameter</u> Rec (%) Spike Result Rec (%) Spike RPD (%) RPD CL Result **Total Phosphorus** 0.204 0.2 0.196 (< 25)0.2 102 98 (75-125)3.70

Batch Information

Analytical Batch: WDA5353 Analytical Method: SM21 4500P-B,E Instrument: Discrete Analyzer 2

Analyst: MEB

Prep Batch: WXX14500
Prep Method: SM21 4500P-B,E
Prep Date/Time: 10/06/2022 10:08

Spike Init Wt./Vol.: 0.2 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: 0.2 mg/L Extract Vol: 25 mL

Print Date: 10/31/2022 3:49:04PM

Matrix Spike Summary

 Original Sample ID: 1225881001
 Analysis Date: 10/06/2022 11:52

 MS Sample ID: 1690024 MS
 Analysis Date: 10/06/2022 11:53

 MSD Sample ID: 1690025 MSD
 Analysis Date: 10/06/2022 11:54

 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225959001, 1225959002, 1225959003, 1225959004

Results by SM21 4500P-B,E

Matrix Spike (mg/L) Spike Duplicate (mg/L)

<u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) RPD (%) RPD CL CL **Total Phosphorus** 0.0633 0.200 .27 103 0.200 0.267 102 75-125 0.89 (< 10)

Batch Information

Analytical Batch: WDA5353 Analytical Method: SM21 4500P-B,E Instrument: Discrete Analyzer 2

Analyst: MEB

Analytical Date/Time: 10/6/2022 11:53:00AM

Prep Batch: WXX14500

Prep Method: Total Phosphorus (W) Ext. Prep Date/Time: 10/6/2022 10:08:00AM

Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 10/31/2022 3:49:05PM

Method Blank

Blank ID: MB for HBN 1845773 [WXX/14507]

Blank Lab ID: 1690731

QC for Samples:

1225959001, 1225959002, 1225959003, 1225959004

Matrix: Water (Surface, Eff., Ground)

Results by SM23 4500-N D

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Kjeldahl Nitrogen
 0.500U
 1.00
 0.310
 mg/L

Batch Information

Analytical Batch: WDA5356 Analytical Method: SM23 4500-N D Instrument: Discrete Analyzer 2

Analyst: IGK

Analytical Date/Time: 10/10/2022 6:29:37PM

Prep Batch: WXX14507 Prep Method: METHOD

Prep Date/Time: 10/10/2022 6:00:00PM

Prep Initial Wt./Vol.: 25 mL Prep Extract Vol: 25 mL

Print Date: 10/31/2022 3:49:06PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1225959 [WXX14507]

Blank Spike Lab ID: 1690732

Date Analyzed: 10/10/2022 18:30

Spike Duplicate ID: LCSD for HBN 1225959

[WXX14507]

Spike Duplicate Lab ID: 1690733

Matrix: Water (Surface, Eff., Ground)

1225959001, 1225959002, 1225959003, 1225959004 QC for Samples:

Results by SM23 4500-N D

Blank Spike (mg/L) Spike Duplicate (mg/L) Rec (%) Result Rec (%) <u>Spike</u> RPD (%) RPD CL Result

<u>Spike</u> Total Kjeldahl Nitrogen 4.06 102 4 3.75 (< 25)4 94 (75-125)7.90

Batch Information

<u>Parameter</u>

Analytical Batch: WDA5356 Analytical Method: SM23 4500-N D

Instrument: Discrete Analyzer 2

Analyst: IGK

Prep Batch: WXX14507 Prep Method: METHOD

Prep Date/Time: 10/10/2022 18:00

Spike Init Wt./Vol.: 4 mg/L Extract Vol: 25 mL Dupe Init Wt./Vol.: 4 mg/L Extract Vol: 25 mL

Print Date: 10/31/2022 3:49:08PM

Matrix Spike Summary

 Original Sample ID: 1225957002
 A

 MS Sample ID: 1690734 MS
 A

 MSD Sample ID: 1690735 MSD
 A

Analysis Date: 10/10/2022 18:34 Analysis Date: 10/10/2022 18:36 Analysis Date: 10/10/2022 18:37 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1225959001, 1225959002, 1225959003, 1225959004

Results by SM23 4500-N D

Matrix Spike (mg/L) Spike Duplicate (mg/L) <u>Parameter</u> <u>Sample</u> Spike Result Rec (%) Spike Result Rec (%) RPD (%) RPD CL CL Total Kjeldahl Nitrogen 1.00U 4.00 3.94 98 4.00 4.12 103 75-125 4.60 (< 25)

Batch Information

Analytical Batch: WDA5356 Analytical Method: SM23 4500-N D Instrument: Discrete Analyzer 2

Analyst: IGK

Analytical Date/Time: 10/10/2022 6:36:11PM

Prep Batch: WXX14507

Prep Method: Distillation TKN by Phenate (W) Prep Date/Time: 10/10/2022 6:00:00PM

Prep Initial Wt./Vol.: 25.00mL Prep Extract Vol: 25.00mL

Print Date: 10/31/2022 3:49:10PM

SGS NORTH AMERICA INC. CHAIN OF CUSTODY RECORD

Ond-1e# 385380 new INSTRUCTIONS: SECTIONS 1-5 MUST BE FILLED OUT. CLIENT: **ADEC** OMISSIONS MAY DELAY THE ONSET OF ANALYSIS. Page of PHONE #: 907-451-2141 CONTACT: Morgan Brown **SECTION 3 PRESERVATIVE** HN03 HN03 H2S04 **PROJECT** PWSID/ NTP 22 464 **WHADA** NAME: SAMPLE PERMIT#: С TYPE: E-MAIL: Morgan.Brown@alaska.gov REPORTS TO: Morgan Brown Soli 245.1 Total Hg Comp 2340B Total hardness 5310B DOC (Lab Filter) SM4500 T-Phos, NO2 +NO3,TKN Grab SM9223B E. SM9222D Fecal Coliform INVOICE TO: ADEC QUOTE #: P.O. #: (Multi-N incre-MATRIX/ RESERVED Ε mental) DATE TIME REMARKS/ SAMPLE IDENTIFICATION R FOR LAB **MATRIX** MM/DD/YY HH:MM LOC ID S CODE USE 5 SAD che3 09/30/22 10:15 SW G 5 9/30/22 9:15 X Che 33 SW G Arch Bact 20-01 9/30/22 9:50 5 G SW X 10:50 X G camb SW 5 SECTION 4 DOD Project? **DATA DELIVERABLE REQUIREMENTS:** RELINQUISHED BY (1) DATE TIME RECEIVED BY: COC ID: 9/30/22 11:12 Cooler ID: RELINQUISHED BY:(2) DATE TIME RECEIVED BY: REQUESTED TURNAROUND TIME AND/OR SPECIAL INSTRUCTIONS Inc. - 2014 -- All CTION 5 RECEIVED BY: **RELINQUISHED BY:(3)** TIME. DATE TEMP BLANK °C: CHAIN OF CUSTODY SEAL: (CIRCLE) RELINQUISHED BY:(4) TIME DATE RECEIVED FOR LABORATORY BY: OR AMBIENT [] INTACT BROKEN ABSENT 9130122 11:15

http://www.sgs.com/terms-and-conditions

(See attached Sample Receipt Form)

COC	e-Sam <u>p</u>	ample Receipt Form				
202	SGS Workorder #:	1	225959	1225959		
Re	view Criteria	Condition (Yes,	No, N/A E	xceptions Noted below		
	ly / Temperature Requirements		Note: Temperature and COC s	eal information is found on the chain of custody form		
-	mple coolers have a corresponding (
	If <0°C, were sample containers ice					
	Note containers receive	ed with ice:				
	cainers received at non-compliant ter	is needed)				
			Note: Refer to form F-083 "Samp	e Guide" for specific holding times and sample containers.		
•	es received within analytical holding					
Do sample la	abels match COC? Record discrepa	ncies. Yes				
	containers differs from COC, default					
information for login. If time	es differ <1hr, record details & login	per COC.				
	Were analytical requests	clear? Yes				
(i.e. method is specified for	r analyses with multiple option for me	ethod				
(Eg, BTEX 8021	vs 8260, Metals 6020 vs 200.8)					
· ·	rs (type/mass/volume/preservative)u					
Note: Exemption for	metals analysis by 200.8/6020 in wa	iter.				
Volatile Analysis Re	equirements (VOC, GRO, LL-Hg	, etc.)				
Vere all soil VOAs received	with a corresponding % solids conta	ainer? N/A				
Were Trip Blanks (e.	g., VOAs, LL-Hg) in cooler with sam	ples? N/A				
Were all water VOA vials f	free of headspace (e.g., bubbles ≤ 6	mm)? N/A				
Were all soil \	OAs field extracted with Methanol+	BFB? N/A				
Note to Client: Any	"No", answer above indicates non-c	compliance	with standard procedu	ures and may impact data quality.		
	<u>Additional ı</u>	notes (if a	pplicable):			

F102b_SRFpm_20210526 49 of 69

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	<u>Container Id</u>	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1225959001-A	HNO3 to pH < 2	ОК			
1225959001-B	HNO3 to pH < 2	OK			
1225959001-C	H2SO4 to pH < 2	OK			
1225959002-A	HNO3 to pH < 2	OK			
1225959002-B	HNO3 to pH < 2	OK			
1225959002-C	H2SO4 to pH < 2	OK			
1225959003-A	HNO3 to pH < 2	OK			
1225959003-B	HNO3 to pH < 2	OK			
1225959003-C	H2SO4 to pH < 2	OK			
1225959004-A	HNO3 to pH < 2	OK			
1225959004-B	HNO3 to pH < 2	OK			
1225959004-C	H2SO4 to pH < 2	OK			
1225959005-A	No Preservative Required	OK			
1225959005-B	HNO3 to pH < 2	OK			
1225959005-C	No Preservative Required	OK			
1225959005-D	HCL to pH < 2	OK			
1225959006-A	No Preservative Required	OK			
1225959006-B	HNO3 to pH < 2	OK			
1225959006-C	No Preservative Required	OK			
1225959006-D	HCL to pH < 2	OK			
1225959007-A	No Preservative Required	OK			
1225959007-B	HNO3 to pH < 2	OK			
1225959007-C	No Preservative Required	OK			
1225959007-D	HCL to pH < 2	OK			
1225959008-A	No Preservative Required	OK			
1225959008-B	HNO3 to pH < 2	OK			
1225959008-C	No Preservative Required	OK			
1225959008-D	HCL to pH < 2	ОК			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Orlando, FL 10/19/22

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

SGS North America, Inc

1225959

SGS Job Number: FA99405

Sampling Date: 09/30/22

Report to:

SGS North America, Inc 200 W Potter Dr Anchorage, AK 99518 justin.nelson@sgs.com; env.alaska.reflabteam@sgs.com

ATTN: Justin Nelson

Total number of pages in report: 19

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Norm Farmer **Technical Director**

Client Service contact: Andrea Colby 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, IL, UT, VT, WA, WI, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: SGS is the sole authority for authorizing edits or modifications to this document. Please share your ideas about how we can serve you better at:

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	5
Section 4: Sample Results	6
4.1: FA99405-1: CHE 3	7
4.2: FA99405-2: CHE 33	8
4.3: FA99405-3: ANCHBACT20-01	9
4.4: FA99405-4: CAM 6	10
Section 5: Misc. Forms	11
5.1: Chain of Custody	12
Section 6: Metals Analysis - QC Data Summaries	
6.1: Prep QC MP41342: Hg	

Sample Summary

SGS North America, Inc

1225959

Job No: FA99405

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FA99405-1	09/30/22	10:15	10/05/22	AQ	Water	CHE 3
FA99405-2	09/30/22	09:15	10/05/22	AQ	Water	CHE 33
FA99405-3	09/30/22	09:50	10/05/22	AQ	Water	ANCHBACT20-01
FA99405-4	09/30/22	10:50	10/05/22	AQ	Water	CAM 6

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS North America, Inc Job No: FA99405

Site: 1225959 Report Date: 10/19/2022 4:44:23 PM

On 10/05/2022, 4 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc - Orlando. at a maximum corrected temperature of 16.4 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. - Orlando Job Number of FA99405 was assigned to the project.

Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals Analysis By Method EPA 245.1

Matrix: AQ Batch ID: MP41342

Sample(s) FA99616-1DUP, FA99616-1MS, FA99616-1MSD, FA99616-1SDL were used as the QC samples for metals.

SGS North America Inc. - Orlando certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc.- Orlando is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Summary of Hits Job Number: FA99405

Account: SGS North America, Inc

Project: 1225959 **Collected:** 09/30/22

FA99405-1 CHE 3

No hits reported in this sample.

FA99405-2 CHE 33

No hits reported in this sample.

FA99405-3 ANCHBACT20-01

No hits reported in this sample.

FA99405-4 CAM 6

No hits reported in this sample.

Orlando, FL

Section 4

Sample Results	
Report of Analysis	
1	

Report of Analysis

Client Sample ID: CHE 3
Lab Sample ID: FA99405-1
Matrix: AQ - Water

Date Sampled: 09/30/22 **Date Received:** 10/05/22 **Percent Solids:** n/a

Project: 1225959

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	10/18/22	10/18/22 јс	EPA 245.1 ¹	EPA 245.1 ²

4

Report of Analysis

 Client Sample ID:
 CHE 33

 Lab Sample ID:
 FA99405-2

 Matrix:
 AQ - Water

 Date Sampled:
 09/30/22

 Date Received:
 10/05/22

 Percent Solids:
 n/a

Project: 1225959

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	10/18/22	10/18/22 јс	EPA 245.1 ¹	EPA 245.1 ²

Report of Analysis

Client Sample ID: ANCHBACT20-01

 Lab Sample ID:
 FA99405-3
 Date Sampled:
 09/30/22

 Matrix:
 AQ - Water
 Date Received:
 10/05/22

 Percent Solids:
 n/a

Project: 1225959

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	10/18/22	10/18/22 јс	EPA 245.1 ¹	EPA 245.1 ²

4

Report of Analysis

Client Sample ID: CAM 6
Lab Sample ID: FA99405-4
Matrix: AQ - Water

Date Sampled: 09/30/22 **Date Received:** 10/05/22 **Percent Solids:** n/a

Project: 1225959

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Mercury	< 0.50	0.50	ug/l	1	10/18/22	10/18/22 јс	EPA 245.1 ¹	EPA 245.1 ²

Misc. Forms

Orlando, FL

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

SGS North America Inc. **CHAIN OF CUSTODY RECORD**

Alaska

New Jersey

Texas

Florida Colorado

North Carolina

Virginia Louisiana www.us.sgs.com

					-										
CLIENT:	SGS North Ame	erica Inc Ala	ska Division		SGS	Refere	nce:			S	GS	Orla	ndo, FL		Page 1 of 1
CONTACT:	J ulie Shumway-	PHONE NO:	(907) 56	2-2343	Addi	tional	Comr	nents	: All	soils	repo	rt ou	t in dry weigl	nt unless	Page 1011
PROJECT	1225959	PWSID#:			#	Preserv-									
NAME:	1223939	NPDL#:			l c	Used:	HINO3								
	Julie Shumw ay	E-MAIL:	Julio-Shumwa			TYPE									
Ju 34	n. Nelson @555.00	Env.Alaska.	RefLabTeam(@sgs.com	N T	C = COMP	Total								
INVOICE TO:		QUOTE #:			A	G = GRAB	<u>F</u>								
env.alask	a.accounting@sgs.com	P.O. #:	1225	959	N N	MI =	245.1								
RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME	MATRIX/ MATRIX	E R S	Incre- mental Soils	Mercury :				MS	MSD	SGS lab #	l .	_ocation ID
ı	Che 3	09/30/2022	10:15:00	CODE	1		X					-	1225959001		LOCATION ID
2	Che 33	09/30/2022	09:15:00	Water	1		x			-			1225959002		
3	AnchBact20-01	09/30/2022	09:50:00	Water	1		X						1225959003		
4	Cam 6	09/30/2022	10:50:00	Water	1		Х						1225959004		
							_								
										-					
Relinquished E	3y: (1)	Date	Time	Received	By:	10	151	22	DOD F	Project	?		NO	Data Delive	rable Requirements:
The	THE STATE OF THE S	10/4	100	Received I	l m	'n	101	00	Repor	t to DL port as [_ (J FI	ags)? /LOQ.	NO		Level 2
Relinguished E	3y: (2)	Date	Time	Received I	By:				Coole	r ID:			ound Time a	nd-or Spec	ial Instructions:
Relinquished E	By: (3)	Date	Time	Received I	Ву:			y.							
									Temp	Blank	°C:	5.9	(CIN	Chain of C	ustody Seal: (Circle)
Relinquished E	By: (4)	Date	Time	Received I	For Lab	oratory	Ву:					nbien		INTACT	BROKEN ABSENT
Relinquished E	By: (4)					ooratory	Ву:								

[[]X 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301

http://www.sgs.com/terms and conditions.htm

F088_COC_REF_LAB_20190411

LABEL VERIFICATION

FA99405: Chain of Custody Page 1 of 2

^{[5500} Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

5.1

CF

SGS Sample Receipt Summary

Job Number: FA9940)5 (Client: SGSAKA	F	Project: 1225959			
Date / Time Received: 10/5/20	22 10:00:00 AM	Delivery	Method: FEDEX	Airbill #'s: 1483 4802	7670		
Therm ID: IR 1;		Therm CF	F: 0.6;	# of Coolers	s: 1		
Cooler Temps (Raw Measure	ed) °C: Cooler	1: (15.8);					
Cooler Temps (Correcte	ed) °C: Cooler	1. (16.4).					
• •			Sample Information		V .	w Ni	_N/A_
Cooler Information	<u>Y or N</u> ✓					<u>r N</u>	_N/A_
Custody Seals Present		_	Sample labels present on		✓		
Custody Seals Intact	✓	-	Samples preserved prope	•	✓		
Temp criteria achieved	\checkmark		Sufficient volume/containe	ers recvd for analysis:	\checkmark		
Cooler temp verification	IR Gun		4. Condition of sample		<u>Intact</u>		
5. Cooler media	Ice (Bag)		5. Sample recvd within HT		✓		
Trio Blank Information	V 1	. N/A	6. Dates/Times/IDs on COC	match Sample Label	✓		
Trip Blank Information	Y or N	_	7. VOCs have headspace				\checkmark
Trip Blank present / cooler			Bottles received for unspen			\checkmark	
Trip Blank listed on COC		✓	Compositing instructions				\checkmark
	W or	S_ N/A_	10. Voa Soil Kits/Jars receiv	ed past 48hrs?			\checkmark
3. Type Of TB Received			11. % Solids Jar received?				\checkmark
3. Type Of 1B Neceived			12. Residual Chlorine Prese	nt?			\checkmark
Misc. Information							
Number of Encores: 25-Gran	m 5-	Gram	Number of 5035 Field Kits:	Number of Lat	Filtered	Metals:	
Test Strip Lot #s:		230315	pH 10-12 219813A				
Residual Chlorine Test Strip Lo							
Comments							
Comments							
SM001 Rev. Date 05/24/17 Technicia	an: SAMUELM	Date:	10/5/2022 10:00:00 A R	eviewer:		Date:	

FA99405: Chain of Custody

Page 2 of 2

Orlando, FL

Section 6

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA99405 Account: SGSAKA - SGS North America, Inc Project: 1225959

Methods: EPA 245.1

Units: ug/l

QC Batch ID: MP41342

Matrix Type: AQUEOUS

Prep Date:

10/18/22

Associated samples MP41342: FA99405-1, FA99405-2, FA99405-3, FA99405-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA99405 Account: SGSAKA - SGS North America, Inc Project: 1225959

QC Batch ID: MP41342 Matrix Type: AQUEOUS Methods: EPA 245.1

Units: ug/l

Prep Date:

10/18/22

10/18/22

Metal	FA99616- Original		RPD	QC Limits	FA99616- Original		Spikelot HGFLWS1	% Rec	QC Limits
Mercury	0.0	0.0	NC	0-10	0.0	2.4	3	80.0	70-130

Associated samples MP41342: FA99405-1, FA99405-2, FA99405-3, FA99405-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA99405 Account: SGSAKA - SGS North America, Inc Project: 1225959

QC Batch ID: MP41342 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

10/18/22

Metal	FA99616 Origina		Spikelot HGFLWS1		MSD RPD	QC Limit	
Mercurv	0.0	2.5	3	83.3	4.1		•

Associated samples MP41342: FA99405-1, FA99405-2, FA99405-3, FA99405-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

Login Number: FA99405
Account: SGSAKA - SGS North America, Inc
Project: 1225959

QC Batch ID: MP41342 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 10/18/22

Associated samples MP41342: FA99405-1, FA99405-2, FA99405-3, FA99405-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA99405
Account: SGSAKA - SGS North America, Inc
Project: 1225959

QC Batch ID: MP41342 Methods: EPA 245.1 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 10/18/22

Metal	FA99616- Original	-1 L SDL 1:5	%DIF	QC Limits	
Mercury	0.00	0.00	NC	0-10	

Associated samples MP41342: FA99405-1, FA99405-2, FA99405-3, FA99405-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested