Effects of Copper on Aquatic Species: A review of the literature

by Phyllis Weber Scannell Scannell Technical Services

Photo North American Benthological Society

Scope of Literature Review

- Review "more current" documents on effects of Cu on fish, periphyton and invertebrates
- Emphasis on research after 1990
- Review focused on:
 - acute toxicity
 - chronic toxicity
 - factors affecting Cu toxicity

Which Forms of Cu are toxic?

Toxicity depends on bioavailability

 Free Cu²⁺ ions are most toxic, but may not be common

 Most dissolved Cu is complexed with other ligands – may or may not be bioavailable

Copper: The good

Cu is a micronutrient for plants and animals

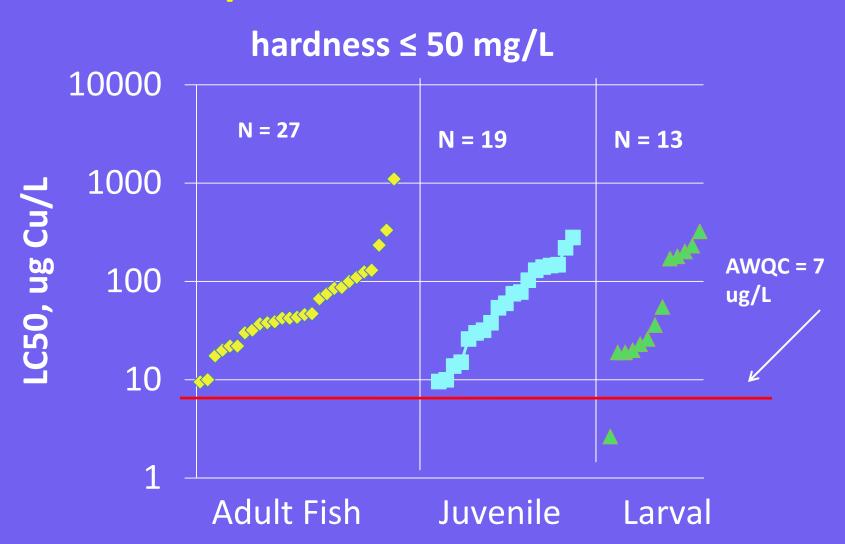
 Cu in invertebrate hemocyanin is similar to iron in hemoglobin, both carry oxygen

Copper: the bad

- In higher concentrations, Cu can be toxic to plants and animals
- Cu, usually as CuSO₄
 - control algae in ponds and lakes,
 - as a fungicide and
 - as an insecticide

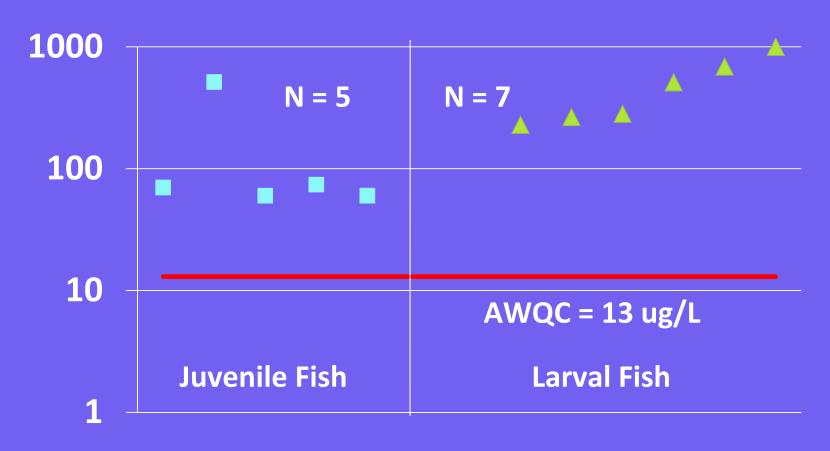
Factors that Reduce Cu toxicity

- Hardness
- Alkalinity
- Naturally occurring organic and inorganic ligands
- pH
- Temperature


Cu Effects on Aquatic Species

- Acute toxicity
- Chronic, or long-term toxicity
 - Decreased growth
 - Changes in olfactory responses
 - Avoidance
 - Reduced swimming speed
 - Organ or cellular damage

Acute Toxicity to Fish


- 78 different tests were found in literature
- 1 test result was lower than the hardnessadjusted AWQ acute criteria
- The maximum toxicity value was 1100 µg/L
- The minimum toxicity value was 2.58 μg/L for Arctic grayling alevins (hardness not given)

AWQ Acute criterion is lower than 58 reported toxic effects

AWQ Acute criterion is lower than reported toxic effects

hardness = 100 mg/L

AWQ Acute criterion is lower than reported toxic effects

hardness = 200 mg/L

Chronic Effects of Cu to Fish

Observed Effect	Endpoint	Effects Conc. μg l ⁻¹	No. of observations	No. of Values < AWQ chronic criterion
Avoidance	LOEC	1.6 to 72	16	4
Cellular damage	LOEC	20 to 25	2	0
Feeding	NOEC	173	1	0
Growth	IC10- IC50	10.8 to 54	3	0
Social interactions	LOEC	30	3	0
Swimming	LOEC	5	1	0

USEPA Study

Bert Shephard, USEPA, conducted an extensive literature review

 He found 105 different test results; 102 tests showed chronic affects above AWQC

 Avoidance was the only chronic effect documented below AWQC

What about olfactory responses?

Difficult to separate acclimation from effect

 Studies that investigate possible cellular damage to olfactory organs are more reliable

 13 µg/L Cu reduced responsiveness of sensory epithelium, 2 µg/L resulted in altered alarm response

Cu Effects to Invertebrates

Acute Effects

Acute Toxicity to Invertebrates

	No. of Tests	No. < AWQC
Insects	7	1
Zooplankton	58	22
Freshwater Mussels	140	57

Aquatic Insect Results

- Few tests found in the literature
- Wide range of species occur in natural systems
- Some species are likely more sensitive than others

FW Zooplankton Results

- Many studies used lab water with added ions
 - Water may not contain DOC and ions of natural systems
- Zooplankton may be more sensitive than fish

Freshwater Mussel Sensitivity

- Authors questioned their results:
 - Used reconstituted lab water
 - Water did not contain natural mix of organic carbon and ions

However

Mussels may be more sensitive than fish

Cu Effects to Invertebrates

Chronic Effects

Chronic Tests on Insects

Cu concentrations in the range of 15 to 32
 μg/L reduced both numbers of aquatic insect
 taxa and numbers of individuals

 These values are higher than the AWQ chronic criterion at the hardness of the test water

Chronic tests on FW Mussels

Endpoint	Effect	Effects Conc. µg l ⁻¹	No. of tests	Values < AWQ
IC10	Growth	5.7 to 8	3	3
IC10	Survival	3.1 to 4.9	3	3
IC25	Growth	7.5 to 12	3	3
IC25	Survival	5.5 to 6.3	3	3

Summary

 Most studies show toxic responses above AWQC

 Studies need to be done in natural water containing DOC and ions

 Sensitivity to Cu appears to be species specific and highly dependent on other ions

Protecting Sensitive Species

- Conduct biomonitoring at site
- Site-specific toxicity tests
- Set site-specific criteria
- Manage for critical habitat conditions: overwintering or low water periods
- Consider managing for sensitive life stages: fertilization, incubation, etc.

Thanks

- Alaska Dept. of Environmental Conservation
- Alaska Dept. of Fish and Game
- Dr. Bert Shephard, USEPA, Seattle
- The many people who reviewed the literature review and provided insightful comments

Effects of Copper on Aquatic Species: A review of the Literature

Technical Report No. 09-04 by Phyllis Weber Scannell Scannell Technical Services

http://www.habitat.adfg.alaska.gov/tech_reports/09_04.pdf